370 research outputs found

    Optimal Elephant Flow Detection

    Full text link
    Monitoring the traffic volumes of elephant flows, including the total byte count per flow, is a fundamental capability for online network measurements. We present an asymptotically optimal algorithm for solving this problem in terms of both space and time complexity. This improves on previous approaches, which can only count the number of packets in constant time. We evaluate our work on real packet traces, demonstrating an up to X2.5 speedup compared to the best alternative.Comment: Accepted to IEEE INFOCOM 201

    Compact Tensor Pooling for Visual Question Answering

    Get PDF
    Performing high level cognitive tasks requires the integration of feature maps with drastically different structure. In Visual Question Answering (VQA) image descriptors have spatial structures, while lexical inputs inherently follow a temporal sequence. The recently proposed Multimodal Compact Bilinear pooling (MCB) forms the outer products, via count-sketch approximation, of the visual and textual representation at each spatial location. While this procedure preserves spatial information locally, outer-products are taken independently for each fiber of the activation tensor, and therefore do not include spatial context. In this work, we introduce multi-dimensional sketch ({MD-sketch}), a novel extension of count-sketch to tensors. Using this new formulation, we propose Multimodal Compact Tensor Pooling (MCT) to fully exploit the global spatial context during bilinear pooling operations. Contrarily to MCB, our approach preserves spatial context by directly convolving the MD-sketch from the visual tensor features with the text vector feature using higher order FFT. Furthermore we apply MCT incrementally at each step of the question embedding and accumulate the multi-modal vectors with a second LSTM layer before the final answer is chosen

    Catching the head, tail, and everything in between: a streaming algorithm for the degree distribution

    Full text link
    The degree distribution is one of the most fundamental graph properties of interest for real-world graphs. It has been widely observed in numerous domains that graphs typically have a tailed or scale-free degree distribution. While the average degree is usually quite small, the variance is quite high and there are vertices with degrees at all scales. We focus on the problem of approximating the degree distribution of a large streaming graph, with small storage. We design an algorithm headtail, whose main novelty is a new estimator of infrequent degrees using truncated geometric random variables. We give a mathematical analysis of headtail and show that it has excellent behavior in practice. We can process streams will millions of edges with storage less than 1% and get extremely accurate approximations for all scales in the degree distribution. We also introduce a new notion of Relative Hausdorff distance between tailed histograms. Existing notions of distances between distributions are not suitable, since they ignore infrequent degrees in the tail. The Relative Hausdorff distance measures deviations at all scales, and is a more suitable distance for comparing degree distributions. By tracking this new measure, we are able to give strong empirical evidence of the convergence of headtail
    • …
    corecore