20,761 research outputs found

    Combining hardware and software instrumentation to classify program executions

    Get PDF
    Several research efforts have studied ways to infer properties of software systems from program spectra gathered from the running systems, usually with software-level instrumentation. While these efforts appear to produce accurate classifications, detailed understanding of their costs and potential cost-benefit tradeoffs is lacking. In this work we present a hybrid instrumentation approach which uses hardware performance counters to gather program spectra at very low cost. This underlying data is further augmented with data captured by minimal amounts of software-level instrumentation. We also evaluate this hybrid approach by comparing it to other existing approaches. We conclude that these hybrid spectra can reliably distinguish failed executions from successful executions at a fraction of the runtime overhead cost of using software-based execution data

    What Causes My Test Alarm? Automatic Cause Analysis for Test Alarms in System and Integration Testing

    Full text link
    Driven by new software development processes and testing in clouds, system and integration testing nowadays tends to produce enormous number of alarms. Such test alarms lay an almost unbearable burden on software testing engineers who have to manually analyze the causes of these alarms. The causes are critical because they decide which stakeholders are responsible to fix the bugs detected during the testing. In this paper, we present a novel approach that aims to relieve the burden by automating the procedure. Our approach, called Cause Analysis Model, exploits information retrieval techniques to efficiently infer test alarm causes based on test logs. We have developed a prototype and evaluated our tool on two industrial datasets with more than 14,000 test alarms. Experiments on the two datasets show that our tool achieves an accuracy of 58.3% and 65.8%, respectively, which outperforms the baseline algorithms by up to 13.3%. Our algorithm is also extremely efficient, spending about 0.1s per cause analysis. Due to the attractive experimental results, our industrial partner, a leading information and communication technology company in the world, has deployed the tool and it achieves an average accuracy of 72% after two months of running, nearly three times more accurate than a previous strategy based on regular expressions.Comment: 12 page
    corecore