7 research outputs found

    Finding Even Cycles Faster via Capped k-Walks

    Full text link
    In this paper, we consider the problem of finding a cycle of length 2k2k (a C2kC_{2k}) in an undirected graph GG with nn nodes and mm edges for constant k≥2k\ge2. A classic result by Bondy and Simonovits [J.Comb.Th.'74] implies that if m≥100kn1+1/km \ge100k n^{1+1/k}, then GG contains a C2kC_{2k}, further implying that one needs to consider only graphs with m=O(n1+1/k)m = O(n^{1+1/k}). Previously the best known algorithms were an O(n2)O(n^2) algorithm due to Yuster and Zwick [J.Disc.Math'97] as well as a O(m2−(1+⌈k/2⌉−1)/(k+1))O(m^{2-(1+\lceil k/2\rceil^{-1})/(k+1)}) algorithm by Alon et al. [Algorithmica'97]. We present an algorithm that uses O(m2k/(k+1))O(m^{2k/(k+1)}) time and finds a C2kC_{2k} if one exists. This bound is O(n2)O(n^2) exactly when m=Θ(n1+1/k)m=\Theta(n^{1+1/k}). For 44-cycles our new bound coincides with Alon et al., while for every k>2k>2 our bound yields a polynomial improvement in mm. Yuster and Zwick noted that it is "plausible to conjecture that O(n2)O(n^2) is the best possible bound in terms of nn". We show "conditional optimality": if this hypothesis holds then our O(m2k/(k+1))O(m^{2k/(k+1)}) algorithm is tight as well. Furthermore, a folklore reduction implies that no combinatorial algorithm can determine if a graph contains a 66-cycle in time O(m3/2−ϵ)O(m^{3/2-\epsilon}) for any ϵ>0\epsilon>0 under the widely believed combinatorial BMM conjecture. Coupled with our main result, this gives tight bounds for finding 66-cycles combinatorially and also separates the complexity of finding 44- and 66-cycles giving evidence that the exponent of mm in the running time should indeed increase with kk. The key ingredient in our algorithm is a new notion of capped kk-walks, which are walks of length kk that visit only nodes according to a fixed ordering. Our main technical contribution is an involved analysis proving several properties of such walks which may be of independent interest.Comment: To appear at STOC'1

    Improved Algorithms for Recognizing Perfect Graphs and Finding Shortest Odd and Even Holes

    Full text link
    Various classes of induced subgraphs are involved in the deepest results of graph theory and graph algorithms. A prominent example concerns the {\em perfection} of GG that the chromatic number of each induced subgraph HH of GG equals the clique number of HH. The seminal Strong Perfect Graph Theorem confirms that the perfection of GG can be determined by detecting odd holes in GG and its complement. Chudnovsky et al. show in 2005 an O(n9)O(n^9) algorithm for recognizing perfect graphs, which can be implemented to run in O(n6+ω)O(n^{6+\omega}) time for the exponent ω<2.373\omega<2.373 of square-matrix multiplication. We show the following improved algorithms. 1. The tractability of detecting odd holes was open for decades until the major breakthrough of Chudnovsky et al. in 2020. Their O(n9)O(n^9) algorithm is later implemented by Lai et al. to run in O(n8)O(n^8) time, leading to the best formerly known algorithm for recognizing perfect graphs. Our first result is an O(n7)O(n^7) algorithm for detecting odd holes, implying an O(n7)O(n^7) algorithm for recognizing perfect graphs. 2. Chudnovsky et al. extend in 2021 the O(n9)O(n^9) algorithms for detecting odd holes (2020) and recognizing perfect graphs (2005) into the first polynomial algorithm for obtaining a shortest odd hole, which runs in O(n14)O(n^{14}) time. We reduce the time for finding a shortest odd hole to O(n13)O(n^{13}). 3. Conforti et al. show in 1997 the first polynomial algorithm for detecting even holes, running in about O(n40)O(n^{40}) time. It then takes a line of intensive efforts in the literature to bring down the complexity to O(n31)O(n^{31}), O(n19)O(n^{19}), O(n11)O(n^{11}), and finally O(n9)O(n^9). On the other hand, the tractability of finding a shortest even hole has been open for 16 years until the very recent O(n31)O(n^{31}) algorithm of Cheong and Lu in 2022. We improve the time of finding a shortest even hole to O(n23)O(n^{23}).Comment: 29 pages, 5 figure
    corecore