48,432 research outputs found

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Experiments on the Application of IOHMMs to Model Financial Returns Series

    Get PDF
    Input/Output Hidden Markov Models (IOHMMs) are conditional hidden Markov models in which the emission (and possibly the transition) probabilities can be conditioned on an input sequence. For example, these conditional distributions can be linear, logistic, or non-linear (using for example multi-layer neural networks). We compare the generalization performance of several models which are special cases of Input/Output Hidden Markov Models on financial time-series prediction tasks: an unconditional Gaussian, a conditional linear Gaussian, a mixture of Gaussians, a mixture of conditional linear Gaussians, a hidden Markov model, and various IOHMMs. The experiments compare these models on predicting the conditional density of returns of market and sector indices. Note that the unconditional Gaussian estimates the first moment with the historical average. The results show that, although for the first moment the historical average gives the best results, for the higher moments, the IOHMMs yielded significantly better performance, as estimated by the out-of-sample likelihood. "Input/Output Hidden Markov Models" (IOHMMs) sont des modèles de Markov cachés pour lesquels les probabilités d'émission (et possiblement de transition) peuvent dépendre d'une séquence d'entrée. Par exemple, ces distributions conditionnelles peuvent être linéaires, logistique, ou non-linéaire (utilisant, par exemple, une réseau de neurones multi-couches). Nous comparons les performances de généralisation de plusieurs modèles qui sont des cas particuliers de IOHMMs pour des problèmes de prédictions de séries financières : une gaussienne inconditionnelle, une gaussienne linéaire conditionnelle, une mixture de gaussienne, une mixture de gaussiennes linéaires conditionnelles, un modèle de Markov caché, et divers IOHMMs. Les expériences comparent ces modèles sur leur prédictions de la densité conditionnelle des rendements des indices sectoriels et du marché. Notons qu'une gaussienne inconditionnelle estime le premier moment avec une moyenne historique. Les résultats montrent que, même si la moyenne historique donne les meilleurs résultats pour le premier moment, pour les moments d'ordres supérieurs les IOHMMs performent significativement mieux, comme estimé par la vraisemblance hors-échantillon.Input/Output Hidden Markov Model (IOHMM), financial series, volatility, Modèles de Markov cachés, IOHMM, séries financières, volatilité

    Predicting Inflation: Professional Experts Versus No-Change Forecasts

    Full text link
    We compare forecasts of United States inflation from the Survey of Professional Forecasters (SPF) to predictions made by simple statistical techniques. In nowcasting, economic expertise is persuasive. When projecting beyond the current quarter, novel yet simplistic probabilistic no-change forecasts are equally competitive. We further interpret surveys as ensembles of forecasts, and show that they can be used similarly to the ways in which ensemble prediction systems have transformed weather forecasting. Then we borrow another idea from weather forecasting, in that we apply statistical techniques to postprocess the SPF forecast, based on experience from the recent past. The foregoing conclusions remain unchanged after survey postprocessing
    • …
    corecore