3 research outputs found

    Novel dual-Vth independent-gate FinFET circuits

    Get PDF
    This paper describes gate work function and oxide thickness tuning to realize novel circuits using dual-Vth independent-gate FinFETs. Dual-Vth FinFETs with independent gates enable series and parallel merge transformations in logic gates, realizing compact low power alternatives. Furthermore, they also enable the design of a new class of compact logic gates with higher expressive power and flexibility than conventional forms, e.g., implementing 12 unique Boolean functions using only four transistors. The gates are designed and calibrated using the University of Florida double-gate model into a technology library. Synthesis results for 14 benchmark circuits from the ISCAS and OpenSPARC suites indicate that on average, the enhanced library reduces delay, power, and area by 9%, 21%, and 27%, respectively, over a conventional library designed using FinFETs in 32nm technology.NSF CAREER Award CCF-074685

    Novel dual-threshold voltage FinFETs for circuit design and optimization

    Get PDF
    A great research effort has been invested on finding alternatives to CMOS that have better process variation and subthreshold leakage. From possible candidates, FinFET is the most compatible with respect to CMOS and it has shown promising leakage and speed performance. This thesis introduces basic characteristics of FinFETs and the effects of FinFET physical parameters on their performance are explained quantitatively. I show how dual- V th independent-gate FinFETs can be fabricated by optimizing their physical parameters. Optimum values for these physical parameters are derived using the physics-based University of Florida SPICE model for double-gate devices, and the optimized FinFETs are simulated and validated using Sentaurus TCAD simulations. Dual-14, FinFETs with independent gates enable series and parallel merge transformations in logic gates, realizing compact low power alternative gates with competitive performance and reduced input capacitance in comparison to conventional FinFET gates. Furthermore, they also enable the design of a new class of compact logic gates with higher expressive power and flexibility than CMOS gates. Synthesis results for 16 benchmark circuits from the ISCAS and OpenSPARC suites indicate that on average at 2GHz and 75°C, the library that contains the novel gates reduces total power and the number of fins by 36% and 37% respectively, over a conventional library that does not have novel gates in the 32nm technology

    FinFET domino logic with independent gate keepers

    No full text
    Scaling of single-gate MOSFET faces great challenges in the nanometer regime due to the severe short-channel effects that cause an exponential increase in the sub-threshold and gate-oxide leakage currents. Double-gate FinFET technology mitigates these limitations by the excellent control over a thin silicon body by two electrically coupled gates. In this paper a variable threshold voltage keeper circuit technique using independent-gate FinFET technology is proposed for simultaneous power reduction and speed enhancement in domino logic circuits. The threshold voltage of a keeper transistor is dynamically modified during circuit operation to reduce contention current without sacrificing noise immunity. The optimum independent-gate keeper gate bias conditions are identified for achieving maximum savings in delay and power while maintaining identical noise immunity as compared to the standard tied-gate FinFET domino circuits. With the variable threshold voltage double-gate keeper circuit technique the evaluation speed is enhanced by up to 49\% and the power consumption is reduced by up to 46\% as compared to the standard domino logic circuits designed for similar noise margin in a 32 nm FinFET technology. (C) 2009 Elsevier Ltd. All rights reserved
    corecore