518 research outputs found

    File system on CRDT

    Get PDF
    In this report we show how to manage a distributed hierarchical structure representing a file system. This structure is optimistically replicated, each user work on his local replica, and updates are sent to other replica. The different replicas eventually observe same view of file systems. At this stage, conflicts between updates are very common. We claim that conflict resolution should rely as little as possible on users. In this report we propose a simple and modular solution to resolve these problems and maintain data consistency

    Abstract unordered and ordered trees CRDT

    Get PDF
    Trees are fundamental data structure for many areas of computer science and system engineering. In this report, we show how to ensure eventual consistency of optimistically replicated trees. In optimistic replication, the different replicas of a distributed system are allowed to diverge but should eventually reach the same value if no more mutations occur. A new method to ensure eventual consistency is to design Conflict-free Replicated Data Types (CRDT). In this report, we design a collection of tree CRDT using existing set CRDTs. The remaining concurrency problems particular to tree data structure are resolved using one or two layers of correction algorithm. For each of these layer, we propose different and independent policies. Any combination of set CRDT and policies can be constructed, giving to the distributed application programmer the entire control of the behavior of the shared data in face of concurrent mutations. We also propose to order these trees by adding a positioning layer which is also independent to obtain a collection of ordered tree CRDTs

    Designing a commutative replicated data type

    Get PDF
    Commuting operations greatly simplify consistency in distributed systems. This paper focuses on designing for commutativity, a topic neglected previously. We show that the replicas of \emph{any} data type for which concurrent operations commute converges to a correct value, under some simple and standard assumptions. We also show that such a data type supports transactions with very low cost. We identify a number of approaches and techniques to ensure commutativity. We re-use some existing ideas (non-destructive updates coupled with invariant identification), but propose a much more efficient implementation. Furthermore, we propose a new technique, background consensus. We illustrate these ideas with a shared edit buffer data type
    • …
    corecore