32,857 research outputs found

    Document Archiving, Replication and Migration Container for Mobile Web Users

    Full text link
    With the increasing use of mobile workstations for a wide variety of tasks and associated information needs, and with many variations of available networks, access to data becomes a prime consideration. This paper discusses issues of workstation mobility and proposes a solution wherein the data structures are accessed in an encapsulated form - through the Portable File System (PFS) wrapper. The paper discusses an implementation of the Portable File System, highlighting the architecture and commenting upon performance of an experimental system. Although investigations have been focused upon mobile access of WWW documents, this technique could be applied to any mobile data access situation.Comment: 5 page

    Deceit: A flexible distributed file system

    Get PDF
    Deceit, a distributed file system (DFS) being developed at Cornell, focuses on flexible file semantics in relation to efficiency, scalability, and reliability. Deceit servers are interchangeable and collectively provide the illusion of a single, large server machine to any clients of the Deceit service. Non-volatile replicas of each file are stored on a subset of the file servers. The user is able to set parameters on a file to achieve different levels of availability, performance, and one-copy serializability. Deceit also supports a file version control mechanism. In contrast with many recent DFS efforts, Deceit can behave like a plain Sun Network File System (NFS) server and can be used by any NFS client without modifying any client software. The current Deceit prototype uses the ISIS Distributed Programming Environment for all communication and process group management, an approach that reduces system complexity and increases system robustness

    Exploring heterogeneity of unreliable machines for p2p backup

    Full text link
    P2P architecture is a viable option for enterprise backup. In contrast to dedicated backup servers, nowadays a standard solution, making backups directly on organization's workstations should be cheaper (as existing hardware is used), more efficient (as there is no single bottleneck server) and more reliable (as the machines are geographically dispersed). We present the architecture of a p2p backup system that uses pairwise replication contracts between a data owner and a replicator. In contrast to standard p2p storage systems using directly a DHT, the contracts allow our system to optimize replicas' placement depending on a specific optimization strategy, and so to take advantage of the heterogeneity of the machines and the network. Such optimization is particularly appealing in the context of backup: replicas can be geographically dispersed, the load sent over the network can be minimized, or the optimization goal can be to minimize the backup/restore time. However, managing the contracts, keeping them consistent and adjusting them in response to dynamically changing environment is challenging. We built a scientific prototype and ran the experiments on 150 workstations in the university's computer laboratories and, separately, on 50 PlanetLab nodes. We found out that the main factor affecting the quality of the system is the availability of the machines. Yet, our main conclusion is that it is possible to build an efficient and reliable backup system on highly unreliable machines (our computers had just 13% average availability)

    Design and Implementation of a Distributed Middleware for Parallel Execution of Legacy Enterprise Applications

    Get PDF
    A typical enterprise uses a local area network of computers to perform its business. During the off-working hours, the computational capacities of these networked computers are underused or unused. In order to utilize this computational capacity an application has to be recoded to exploit concurrency inherent in a computation which is clearly not possible for legacy applications without any source code. This thesis presents the design an implementation of a distributed middleware which can automatically execute a legacy application on multiple networked computers by parallelizing it. This middleware runs multiple copies of the binary executable code in parallel on different hosts in the network. It wraps up the binary executable code of the legacy application in order to capture the kernel level data access system calls and perform them distributively over multiple computers in a safe and conflict free manner. The middleware also incorporates a dynamic scheduling technique to execute the target application in minimum time by scavenging the available CPU cycles of the hosts in the network. This dynamic scheduling also supports the CPU availability of the hosts to change over time and properly reschedule the replicas performing the computation to minimize the execution time. A prototype implementation of this middleware has been developed as a proof of concept of the design. This implementation has been evaluated with a few typical case studies and the test results confirm that the middleware works as expected
    corecore