3,063 research outputs found

    Phonetic Searching

    Get PDF
    An improved method and apparatus is disclosed which uses probabilistic techniques to map an input search string with a prestored audio file, and recognize certain portions of a search string phonetically. An improved interface is disclosed which permits users to input search strings, linguistics, phonetics, or a combination of both, and also allows logic functions to be specified by indicating how far separated specific phonemes are in time.Georgia Tech Research Corporatio

    WordSup: Exploiting Word Annotations for Character based Text Detection

    Full text link
    Imagery texts are usually organized as a hierarchy of several visual elements, i.e. characters, words, text lines and text blocks. Among these elements, character is the most basic one for various languages such as Western, Chinese, Japanese, mathematical expression and etc. It is natural and convenient to construct a common text detection engine based on character detectors. However, training character detectors requires a vast of location annotated characters, which are expensive to obtain. Actually, the existing real text datasets are mostly annotated in word or line level. To remedy this dilemma, we propose a weakly supervised framework that can utilize word annotations, either in tight quadrangles or the more loose bounding boxes, for character detector training. When applied in scene text detection, we are thus able to train a robust character detector by exploiting word annotations in the rich large-scale real scene text datasets, e.g. ICDAR15 and COCO-text. The character detector acts as a key role in the pipeline of our text detection engine. It achieves the state-of-the-art performance on several challenging scene text detection benchmarks. We also demonstrate the flexibility of our pipeline by various scenarios, including deformed text detection and math expression recognition.Comment: 2017 International Conference on Computer Visio

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    Decoupling Recognition from Detection: Single Shot Self-Reliant Scene Text Spotter

    Full text link
    Typical text spotters follow the two-stage spotting strategy: detect the precise boundary for a text instance first and then perform text recognition within the located text region. While such strategy has achieved substantial progress, there are two underlying limitations. 1) The performance of text recognition depends heavily on the precision of text detection, resulting in the potential error propagation from detection to recognition. 2) The RoI cropping which bridges the detection and recognition brings noise from background and leads to information loss when pooling or interpolating from feature maps. In this work we propose the single shot Self-Reliant Scene Text Spotter (SRSTS), which circumvents these limitations by decoupling recognition from detection. Specifically, we conduct text detection and recognition in parallel and bridge them by the shared positive anchor point. Consequently, our method is able to recognize the text instances correctly even though the precise text boundaries are challenging to detect. Additionally, our method reduces the annotation cost for text detection substantially. Extensive experiments on regular-shaped benchmark and arbitrary-shaped benchmark demonstrate that our SRSTS compares favorably to previous state-of-the-art spotters in terms of both accuracy and efficiency.Comment: To be appeared in the Proceedings of the ACM International Conference on Multimedia (ACM MM), 202

    GTH-UPM system for search on speech evaluation

    Get PDF
    This paper describes the GTH-UPM system for the Albayzin 2014 Search on Speech Evaluation. Teh evaluation task consists of searching a list of terms/queries in audio files. The GTH-UPM system we are presenting is based on a LVCSR (Large Vocabulary Continuous Speech Recognition) system. We have used MAVIR corpus and the Spanish partition of the EPPS (European Parliament Plenary Sessions) database for training both acoustic and language models. The main effort has been focused on lexicon preparation and text selection for the language model construction. The system makes use of different lexicon and language models depending on the task that is performed. For the best configuration of the system on the development set, we have obtained a FOM of 75.27 for the deyword spotting task

    Enhanced Characterness for Text Detection in the Wild

    Full text link
    Text spotting is an interesting research problem as text may appear at any random place and may occur in various forms. Moreover, ability to detect text opens the horizons for improving many advanced computer vision problems. In this paper, we propose a novel language agnostic text detection method utilizing edge enhanced Maximally Stable Extremal Regions in natural scenes by defining strong characterness measures. We show that a simple combination of characterness cues help in rejecting the non text regions. These regions are further fine-tuned for rejecting the non-textual neighbor regions. Comprehensive evaluation of the proposed scheme shows that it provides comparative to better generalization performance to the traditional methods for this task
    corecore