3 research outputs found

    TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou

    Full text link
    Life-long user behavior modeling, i.e., extracting a user's hidden interests from rich historical behaviors in months or even years, plays a central role in modern CTR prediction systems. Conventional algorithms mostly follow two cascading stages: a simple General Search Unit (GSU) for fast and coarse search over tens of thousands of long-term behaviors and an Exact Search Unit (ESU) for effective Target Attention (TA) over the small number of finalists from GSU. Although efficient, existing algorithms mostly suffer from a crucial limitation: the \textit{inconsistent} target-behavior relevance metrics between GSU and ESU. As a result, their GSU usually misses highly relevant behaviors but retrieves ones considered irrelevant by ESU. In such case, the TA in ESU, no matter how attention is allocated, mostly deviates from the real user interests and thus degrades the overall CTR prediction accuracy. To address such inconsistency, we propose \textbf{TWo-stage Interest Network (TWIN)}, where our Consistency-Preserved GSU (CP-GSU) adopts the identical target-behavior relevance metric as the TA in ESU, making the two stages twins. Specifically, to break TA's computational bottleneck and extend it from ESU to GSU, or namely from behavior length 10210^2 to length 10410510^4-10^5, we build a novel attention mechanism by behavior feature splitting. For the video inherent features of a behavior, we calculate their linear projection by efficient pre-computing \& caching strategies. And for the user-item cross features, we compress each into a one-dimentional bias term in the attention score calculation to save the computational cost. The consistency between two stages, together with the effective TA-based relevance metric in CP-GSU, contributes to significant performance gain in CTR prediction.Comment: Accepted by KDD 202

    Usability and Security Testing of Online Links: A Framework for Click-Through Rate Prediction Using Deep Learning

    Get PDF
    CC BY 4.0The user, usage, and usability (3U’s) are three principal constituents for cyber security. The effective analysis of the 3U data using artificial intelligence (AI) techniques allows to deduce valuable observations, which allow domain experts to design practical strategies to alleviate cyberattacks and ensure decision support. Many internet applications, such as internet advertising and recommendation systems, rely on click-through rate (CTR) prediction to anticipate the possibility that a user would click on an ad or product, which is key for understanding human online behaviour. However, online systems are prone to click on fraud attacks. We propose a Human-Centric Cyber Security (HCCS) model that additionally includes AI techniques targeted at the key elements of user, usage, and usability. As a case study, we analyse a CTR prediction task, using deep learning methods (factorization machines) to predict online fraud through clickbait. The results of experiments on a real-world benchmark Avazu dataset show that the proposed approach outpaces (AUC is 0.8062) other CTR forecasting approaches, demonstrating the viability of the proposed framework

    Field-Aware Neural Factorization Machine for Click-Through Rate Prediction

    No full text
    corecore