109 research outputs found

    AI Education Matters: Lessons from a Kaggle Click-Through Rate Prediction Competition

    Full text link
    In this column, we will look at a particular Kaggle.com click-through rate (CTR) prediction competition, observe what the winning entries teach about this part of the machine learning landscape, and then discuss the valuable opportunities and resources this commends to AI educators and their students. [excerpt

    Unleash the Power of Context: Enhancing Large-Scale Recommender Systems with Context-Based Prediction Models

    Full text link
    In this work, we introduce the notion of Context-Based Prediction Models. A Context-Based Prediction Model determines the probability of a user's action (such as a click or a conversion) solely by relying on user and contextual features, without considering any specific features of the item itself. We have identified numerous valuable applications for this modeling approach, including training an auxiliary context-based model to estimate click probability and incorporating its prediction as a feature in CTR prediction models. Our experiments indicate that this enhancement brings significant improvements in offline and online business metrics while having minimal impact on the cost of serving. Overall, our work offers a simple and scalable, yet powerful approach for enhancing the performance of large-scale commercial recommender systems, with broad implications for the field of personalized recommendations

    FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction

    Full text link
    Advertising and feed ranking are essential to many Internet companies such as Facebook and Sina Weibo. Among many real-world advertising and feed ranking systems, click through rate (CTR) prediction plays a central role. There are many proposed models in this field such as logistic regression, tree based models, factorization machine based models and deep learning based CTR models. However, many current works calculate the feature interactions in a simple way such as Hadamard product and inner product and they care less about the importance of features. In this paper, a new model named FiBiNET as an abbreviation for Feature Importance and Bilinear feature Interaction NETwork is proposed to dynamically learn the feature importance and fine-grained feature interactions. On the one hand, the FiBiNET can dynamically learn the importance of features via the Squeeze-Excitation network (SENET) mechanism; on the other hand, it is able to effectively learn the feature interactions via bilinear function. We conduct extensive experiments on two real-world datasets and show that our shallow model outperforms other shallow models such as factorization machine(FM) and field-aware factorization machine(FFM). In order to improve performance further, we combine a classical deep neural network(DNN) component with the shallow model to be a deep model. The deep FiBiNET consistently outperforms the other state-of-the-art deep models such as DeepFM and extreme deep factorization machine(XdeepFM).Comment: 8 pages,5 figure

    Lightweight Boosting Models for User Response Prediction Using Adversarial Validation

    Full text link
    The ACM RecSys Challenge 2023, organized by ShareChat, aims to predict the probability of the app being installed. This paper describes the lightweight solution to this challenge. We formulate the task as a user response prediction task. For rapid prototyping for the task, we propose a lightweight solution including the following steps: 1) using adversarial validation, we effectively eliminate uninformative features from a dataset; 2) to address noisy continuous features and categorical features with a large number of unique values, we employ feature engineering techniques.; 3) we leverage Gradient Boosted Decision Trees (GBDT) for their exceptional performance and scalability. The experiments show that a single LightGBM model, without additional ensembling, performs quite well. Our team achieved ninth place in the challenge with the final leaderboard score of 6.059065. Code for our approach can be found here: https://github.com/choco9966/recsys-challenge-2023.Comment: 7 pages, 4 figures, ACM RecSys 2023 Challenge Workshop accepted pape
    corecore