128,632 research outputs found
High intensity study of THz detectors based on field effect transistors
Terahertz power dependence of the photoresponse of field effect transistors,
operating at frequencies from 0.1 to 3 THz for incident radiation power density
up to 100 kW/cm^2 was studied for Si metal-oxide-semiconductor field-effect
transistors and InGaAs high electron mobility transistors. The photoresponse
increased linearly with increasing radiation power up to kW/cm^2 range. The
saturation of the photoresponse was observed for all investigated field effect
transistors for intensities above several kW/cm^2. The observed signal
saturation is explained by drain photocurrent saturation similar to saturation
in direct currents output characteristics. The theoretical model of terahertz
field effect transistor photoresponse at high intensity was developed. The
model explains quantitatively experimental data both in linear and nonlinear
(saturation) range. Our results show that dynamic range of field effect
transistors is very high and can extend over more than six orderd of magnitudes
of power densities (from 0.5 mW/cm^2 to 5 kW/cm^2)
Performance of a spin-based insulated gate field effect transistor
Fundamental physical properties limiting the performance of spin field effect
transistors are compared to those of ordinary (charge-based) field effect
transistors. Instead of raising and lowering a barrier to current flow these
spin transistors use static spin-selective barriers and gate control of spin
relaxation. The different origins of transistor action lead to distinct size
dependences of the power dissipation in these transistors and permit
sufficiently small spin-based transistors to surpass the performance of
charge-based transistors at room temperature or above. This includes lower
threshold voltages, smaller gate capacitances, reduced gate switching energies
and smaller source-drain leakage currents.Comment: 4 pages including 3 figures, APL in pres
Organic Single-Crystal Field-Effect Transistors
We present an overview of recent studies of the charge transport in the field
effect transistors on the surface of single crystals of organic
low-molecular-weight materials. We first discuss in detail the technological
progress that has made these investigations possible. Particular attention is
devoted to the growth and characterization of single crystals of organic
materials and to different techniques that have been developed for device
fabrication. We then concentrate on the measurements of the electrical
characteristics. In most cases, these characteristics are highly reproducible
and demonstrate the quality of the single crystal transistors. Particularly
noticeable are the small sub-threshold slope, the non-monotonic temperature
dependence of the mobility, and its weak dependence on the gate voltage. In the
best rubrene transistors, room-temperature values of as high as 15
cm/Vs have been observed. This represents an order-of-magnitude increase
with respect to the highest mobility previously reported for organic thin film
transistors. In addition, the highest-quality single-crystal devices exhibit a
significant anisotropy of the conduction properties with respect to the
crystallographic direction. These observations indicate that the field effect
transistors fabricated on single crystals are suitable for the study of the
\textit{intrinsic} electronic properties of organic molecular semiconductors.
We conclude by indicating some directions in which near-future work should
focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on
organic semiconductor
Vertical field-effect transistors in III-V semiconductors
Vertical metal-semiconductor field-effect transistors in GaAs/GaAlAs and vertical metal-oxide-semiconductor field-effect transistors (MOSFET's) in InP/GaInPAs materials have been fabricated. These structures make possible short channel devices with gate lengths defined by epitaxy rather than by submicron photolithography processes. Devices with transconductances as high as 280 mS/mm in GaAs and 60 mS/mm (with 100-nm gate oxide) for the InP/GaInPAs MOSFET's were observed
Screening and interlayer coupling in multilayer graphene field-effect transistors
With the motivation of improving the performance and reliability of
aggressively scaled nano-patterned graphene field-effect transistors, we
present the first systematic experimental study on charge and current
distribution in multilayer graphene field-effect transistors. We find a very
particular thickness dependence for Ion, Ioff, and the Ion/Ioff ratio, and
propose a resistor network model including screening and interlayer coupling to
explain the experimental findings. In particular, our model does not invoke
modification of the linear energy-band structure of graphene for the multilayer
case. Noise reduction in nano-scale few-layer graphene transistors is
experimentally demonstrated and can be understood within this model as well.Comment: 13 pages, 4 figures, 20 reference
Multiplexer uses insulated gate-field effect transistors
Small lightweight multiplexer incorporates IG-FETs /Insulated Gate-Field Effect Transistors/ for all digital logic functions, including the internally generated 3.6-kHz clock. It consists of 30 primary channels, each of which is sampled 120 times per second
Graphene Field Effect Transistors: Diffusion-Drift Theory
Based on explicit solution of current continuity equation in the graphene
FET's channel the semi-classical diffusion-drift description of the carrier
transport and I-V characteristics model has been developed. Role of
rechargeable defects (interface traps) near or at the interface between
graphene and insulated layers has also described.Comment: 24 pages, 13 figures, a chapter in "Graphene, Theory, Research and
Applications", INTEC
Field-Effect Transistors on Tetracene Single Crystals
We report on the fabrication and electrical characterization of field-effect
transistors at the surface of tetracene single crystals. We find that the
mobility of these transistors reaches the room-temperature value of $0.4 \
cm^2/Vs$. The non-monotonous temperature dependence of the mobility, its weak
gate voltage dependence, as well as the sharpness of the subthreshold slope
confirm the high quality of single-crystal devices. This is due to the
fabrication process that does not substantially affect the crystal quality.Comment: Accepted by Appl. Phys. Lett, tentatively scheduled for publication
in the November 24, 2003 issu
- …
