128,632 research outputs found

    High intensity study of THz detectors based on field effect transistors

    Full text link
    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm^2 was studied for Si metal-oxide-semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation power up to kW/cm^2 range. The saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm^2. The observed signal saturation is explained by drain photocurrent saturation similar to saturation in direct currents output characteristics. The theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitatively experimental data both in linear and nonlinear (saturation) range. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orderd of magnitudes of power densities (from 0.5 mW/cm^2 to 5 kW/cm^2)

    Performance of a spin-based insulated gate field effect transistor

    Full text link
    Fundamental physical properties limiting the performance of spin field effect transistors are compared to those of ordinary (charge-based) field effect transistors. Instead of raising and lowering a barrier to current flow these spin transistors use static spin-selective barriers and gate control of spin relaxation. The different origins of transistor action lead to distinct size dependences of the power dissipation in these transistors and permit sufficiently small spin-based transistors to surpass the performance of charge-based transistors at room temperature or above. This includes lower threshold voltages, smaller gate capacitances, reduced gate switching energies and smaller source-drain leakage currents.Comment: 4 pages including 3 figures, APL in pres

    Organic Single-Crystal Field-Effect Transistors

    Full text link
    We present an overview of recent studies of the charge transport in the field effect transistors on the surface of single crystals of organic low-molecular-weight materials. We first discuss in detail the technological progress that has made these investigations possible. Particular attention is devoted to the growth and characterization of single crystals of organic materials and to different techniques that have been developed for device fabrication. We then concentrate on the measurements of the electrical characteristics. In most cases, these characteristics are highly reproducible and demonstrate the quality of the single crystal transistors. Particularly noticeable are the small sub-threshold slope, the non-monotonic temperature dependence of the mobility, and its weak dependence on the gate voltage. In the best rubrene transistors, room-temperature values of μ\mu as high as 15 cm2^2/Vs have been observed. This represents an order-of-magnitude increase with respect to the highest mobility previously reported for organic thin film transistors. In addition, the highest-quality single-crystal devices exhibit a significant anisotropy of the conduction properties with respect to the crystallographic direction. These observations indicate that the field effect transistors fabricated on single crystals are suitable for the study of the \textit{intrinsic} electronic properties of organic molecular semiconductors. We conclude by indicating some directions in which near-future work should focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on organic semiconductor

    Transport Phenomena in Field Effect Transistors

    Get PDF

    Vertical field-effect transistors in III-V semiconductors

    Get PDF
    Vertical metal-semiconductor field-effect transistors in GaAs/GaAlAs and vertical metal-oxide-semiconductor field-effect transistors (MOSFET's) in InP/GaInPAs materials have been fabricated. These structures make possible short channel devices with gate lengths defined by epitaxy rather than by submicron photolithography processes. Devices with transconductances as high as 280 mS/mm in GaAs and 60 mS/mm (with 100-nm gate oxide) for the InP/GaInPAs MOSFET's were observed

    Screening and interlayer coupling in multilayer graphene field-effect transistors

    Full text link
    With the motivation of improving the performance and reliability of aggressively scaled nano-patterned graphene field-effect transistors, we present the first systematic experimental study on charge and current distribution in multilayer graphene field-effect transistors. We find a very particular thickness dependence for Ion, Ioff, and the Ion/Ioff ratio, and propose a resistor network model including screening and interlayer coupling to explain the experimental findings. In particular, our model does not invoke modification of the linear energy-band structure of graphene for the multilayer case. Noise reduction in nano-scale few-layer graphene transistors is experimentally demonstrated and can be understood within this model as well.Comment: 13 pages, 4 figures, 20 reference

    Multiplexer uses insulated gate-field effect transistors

    Get PDF
    Small lightweight multiplexer incorporates IG-FETs /Insulated Gate-Field Effect Transistors/ for all digital logic functions, including the internally generated 3.6-kHz clock. It consists of 30 primary channels, each of which is sampled 120 times per second

    Graphene Field Effect Transistors: Diffusion-Drift Theory

    Get PDF
    Based on explicit solution of current continuity equation in the graphene FET's channel the semi-classical diffusion-drift description of the carrier transport and I-V characteristics model has been developed. Role of rechargeable defects (interface traps) near or at the interface between graphene and insulated layers has also described.Comment: 24 pages, 13 figures, a chapter in "Graphene, Theory, Research and Applications", INTEC

    Field-Effect Transistors on Tetracene Single Crystals

    Full text link
    We report on the fabrication and electrical characterization of field-effect transistors at the surface of tetracene single crystals. We find that the mobility of these transistors reaches the room-temperature value of $0.4 \ cm^2/Vs$. The non-monotonous temperature dependence of the mobility, its weak gate voltage dependence, as well as the sharpness of the subthreshold slope confirm the high quality of single-crystal devices. This is due to the fabrication process that does not substantially affect the crystal quality.Comment: Accepted by Appl. Phys. Lett, tentatively scheduled for publication in the November 24, 2003 issu
    corecore