11,950 research outputs found
Graph Few-shot Learning via Knowledge Transfer
Towards the challenging problem of semi-supervised node classification, there
have been extensive studies. As a frontier, Graph Neural Networks (GNNs) have
aroused great interest recently, which update the representation of each node
by aggregating information of its neighbors. However, most GNNs have shallow
layers with a limited receptive field and may not achieve satisfactory
performance especially when the number of labeled nodes is quite small. To
address this challenge, we innovatively propose a graph few-shot learning (GFL)
algorithm that incorporates prior knowledge learned from auxiliary graphs to
improve classification accuracy on the target graph. Specifically, a
transferable metric space characterized by a node embedding and a
graph-specific prototype embedding function is shared between auxiliary graphs
and the target, facilitating the transfer of structural knowledge. Extensive
experiments and ablation studies on four real-world graph datasets demonstrate
the effectiveness of our proposed model.Comment: Full paper (with Appendix) of AAAI 202
Few-Shot Image Recognition by Predicting Parameters from Activations
In this paper, we are interested in the few-shot learning problem. In
particular, we focus on a challenging scenario where the number of categories
is large and the number of examples per novel category is very limited, e.g. 1,
2, or 3. Motivated by the close relationship between the parameters and the
activations in a neural network associated with the same category, we propose a
novel method that can adapt a pre-trained neural network to novel categories by
directly predicting the parameters from the activations. Zero training is
required in adaptation to novel categories, and fast inference is realized by a
single forward pass. We evaluate our method by doing few-shot image recognition
on the ImageNet dataset, which achieves the state-of-the-art classification
accuracy on novel categories by a significant margin while keeping comparable
performance on the large-scale categories. We also test our method on the
MiniImageNet dataset and it strongly outperforms the previous state-of-the-art
methods
Scene Graph Generation via Conditional Random Fields
Despite the great success object detection and segmentation models have
achieved in recognizing individual objects in images, performance on cognitive
tasks such as image caption, semantic image retrieval, and visual QA is far
from satisfactory. To achieve better performance on these cognitive tasks,
merely recognizing individual object instances is insufficient. Instead, the
interactions between object instances need to be captured in order to
facilitate reasoning and understanding of the visual scenes in an image. Scene
graph, a graph representation of images that captures object instances and
their relationships, offers a comprehensive understanding of an image. However,
existing techniques on scene graph generation fail to distinguish subjects and
objects in the visual scenes of images and thus do not perform well with
real-world datasets where exist ambiguous object instances. In this work, we
propose a novel scene graph generation model for predicting object instances
and its corresponding relationships in an image. Our model, SG-CRF, learns the
sequential order of subject and object in a relationship triplet, and the
semantic compatibility of object instance nodes and relationship nodes in a
scene graph efficiently. Experiments empirically show that SG-CRF outperforms
the state-of-the-art methods, on three different datasets, i.e., CLEVR, VRD,
and Visual Genome, raising the Recall@100 from 24.99% to 49.95%, from 41.92% to
50.47%, and from 54.69% to 54.77%, respectively
An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier
EMG-based gesture recognition shows promise for human-machine interaction.
Systems are often afflicted by signal and electrode variability which degrades
performance over time. We present an end-to-end system combating this
variability using a large-area, high-density sensor array and a robust
classification algorithm. EMG electrodes are fabricated on a flexible substrate
and interfaced to a custom wireless device for 64-channel signal acquisition
and streaming. We use brain-inspired high-dimensional (HD) computing for
processing EMG features in one-shot learning. The HD algorithm is tolerant to
noise and electrode misplacement and can quickly learn from few gestures
without gradient descent or back-propagation. We achieve an average
classification accuracy of 96.64% for five gestures, with only 7% degradation
when training and testing across different days. Our system maintains this
accuracy when trained with only three trials of gestures; it also demonstrates
comparable accuracy with the state-of-the-art when trained with one trial
Object Detection in 20 Years: A Survey
Object detection, as of one the most fundamental and challenging problems in
computer vision, has received great attention in recent years. Its development
in the past two decades can be regarded as an epitome of computer vision
history. If we think of today's object detection as a technical aesthetics
under the power of deep learning, then turning back the clock 20 years we would
witness the wisdom of cold weapon era. This paper extensively reviews 400+
papers of object detection in the light of its technical evolution, spanning
over a quarter-century's time (from the 1990s to 2019). A number of topics have
been covered in this paper, including the milestone detectors in history,
detection datasets, metrics, fundamental building blocks of the detection
system, speed up techniques, and the recent state of the art detection methods.
This paper also reviews some important detection applications, such as
pedestrian detection, face detection, text detection, etc, and makes an in-deep
analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible
publicatio
- …
