12 research outputs found

    Algorithms to calculate the most reliable maximum flow in content delivery network

    Get PDF
    Funding Information: Funding Statement: This work was partly supported by Open Research Fund from State Key Laboratory of Smart Grid Protection and Control, China (Zhang B, www.byqsc.net/com/nrjt/), Rapid Support Project (61406190120, Zhang B), the Fundamental Research Funds for the Central Universities (2242021k10011, Zhang B, www.seu.edu.cn) and the National Key R&D Program of China (2018YFC0830200, Zhang B, www.most.gov.cn).Peer reviewedPublisher PD

    BYOC: Personalized Few-Shot Classification with Co-Authored Class Descriptions

    Full text link
    Text classification is a well-studied and versatile building block for many NLP applications. Yet, existing approaches require either large annotated corpora to train a model with or, when using large language models as a base, require carefully crafting the prompt as well as using a long context that can fit many examples. As a result, it is not possible for end-users to build classifiers for themselves. To address this issue, we propose a novel approach to few-shot text classification using an LLM. Rather than few-shot examples, the LLM is prompted with descriptions of the salient features of each class. These descriptions are coauthored by the user and the LLM interactively: while the user annotates each few-shot example, the LLM asks relevant questions that the user answers. Examples, questions, and answers are summarized to form the classification prompt. Our experiments show that our approach yields high accuracy classifiers, within 82% of the performance of models trained with significantly larger datasets while using only 1% of their training sets. Additionally, in a study with 30 participants, we show that end-users are able to build classifiers to suit their specific needs. The personalized classifiers show an average accuracy of 90%, which is 15% higher than the state-of-the-art approach.Comment: Accepted at EMNLP 2023 (Findings

    Human-machine knowledge hybrid augmentation method for surface defect detection based few-data learning

    Full text link
    Visual-based defect detection is a crucial but challenging task in industrial quality control. Most mainstream methods rely on large amounts of existing or related domain data as auxiliary information. However, in actual industrial production, there are often multi-batch, low-volume manufacturing scenarios with rapidly changing task demands, making it difficult to obtain sufficient and diverse defect data. This paper proposes a parallel solution that uses a human-machine knowledge hybrid augmentation method to help the model extract unknown important features. Specifically, by incorporating experts' knowledge of abnormality to create data with rich features, positions, sizes, and backgrounds, we can quickly accumulate an amount of data from scratch and provide it to the model as prior knowledge for few-data learning. The proposed method was evaluated on the magnetic tile dataset and achieved F1-scores of 60.73%, 70.82%, 77.09%, and 82.81% when using 2, 5, 10, and 15 training images, respectively. Compared to the traditional augmentation method's F1-score of 64.59%, the proposed method achieved an 18.22% increase in the best result, demonstrating its feasibility and effectiveness in few-data industrial defect detection.Comment: 24 pages, 15 figure

    Learning from Very Few Samples: A Survey

    Full text link
    Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 300+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.Comment: 30 page
    corecore