33,575 research outputs found

    Few-shot classification in Named Entity Recognition Task

    Full text link
    For many natural language processing (NLP) tasks the amount of annotated data is limited. This urges a need to apply semi-supervised learning techniques, such as transfer learning or meta-learning. In this work we tackle Named Entity Recognition (NER) task using Prototypical Network - a metric learning technique. It learns intermediate representations of words which cluster well into named entity classes. This property of the model allows classifying words with extremely limited number of training examples, and can potentially be used as a zero-shot learning method. By coupling this technique with transfer learning we achieve well-performing classifiers trained on only 20 instances of a target class.Comment: In proceedings of the 34th ACM/SIGAPP Symposium on Applied Computin

    Mutual Reinforcement Effects in Japanese Sentence Classification and Named Entity Recognition Tasks

    Full text link
    Information extraction(IE) is a crucial subfield within natural language processing. However, for the traditionally segmented approach to sentence classification and Named Entity Recognition, the intricate interactions between these individual subtasks remain largely uninvestigated. In this study, we propose an integrative analysis, converging sentence classification with Named Entity Recognition, with the objective to unveil and comprehend the mutual reinforcement effect within these two information extraction subtasks. To achieve this, we introduce a Sentence Classification and Named Entity Recognition Multi-task (SCNM) approach that combines Sentence Classification (SC) and Named Entity Recognition (NER). We develop a Sentence-to-Label Generation (SLG) framework for SCNM and construct a Wikipedia dataset containing both SC and NER. Using a format converter, we unify input formats and employ a generative model to generate SC-labels, NER-labels, and associated text segments. We propose a Constraint Mechanism (CM) to improve generated format accuracy. Our results show SC accuracy increased by 1.13 points and NER by 1.06 points in SCNM compared to standalone tasks, with CM raising format accuracy from 63.61 to 100. The findings indicate mutual reinforcement effects between SC and NER, and integration enhances both tasks' performance. We additionally implemented the SLG framework on single SC task. It yielded superior accuracies compared to the baseline on two distinct Japanese SC datasets. Notably, in the experiment of few-shot learning, SLG framework shows much better performance than fine-tune method. These empirical findings contribute additional evidence to affirm the efficacy of the SLG framework.Comment: 25 pages, 12 figures, 19 tables. arXiv admin note: substantial text overlap with arXiv:2306.1597

    Zero- and Few-Shot Machine Learning for Named Entity Recognition in Biomedical Texts

    Get PDF
    Named entity recognition (NER) is an NLP that involves identifying and classifying named entities in text. Token classification is a crucial subtask of NER that assumes assigning labels to individual tokens within a text, indicating the named entity category to which they belong. Fine-tuning large language models (LLMs) on labeled domain datasets has emerged as a powerful technique for improving NER performance. By training a pretrained LLM such as BERT on domain-specific labeled data, the model learns to recognize named entities specific to that domain with high accuracy. This approach has been applied to a wide range of domains including biomedical and has demonstrated significant improvements in NER accuracy. Still, data for fine-tuning pre-trained LLMs is large and labeling is a time-consuming and expensive process that requires expert domain knowledge. Also, domains with an open set of classes yield difficulties in traditional machine learning approaches since the number of classes to predict needs to be pre-defined. Our solution to the two mentioned problems is based on data transformation for factorizing the initial multiple classification problem into a binary one and applying crossencoder- based BERT architecture for zero- and few-shot learning. To create our dataset, we transformed six widely used biomedical datasets that contain various biomedical entities such as genes, drugs, diseases, adverse events, chemicals, etc., into a uniform format. This transformation process enabled us to merge the datasets into a single cohesive dataset of 26 different named entity classes. We then fine-tuned two pre-trained language models: BioBERT and PubMedBERT for the NER task in zero- and few-shot settings. The results of the experiment for 9 classes in zero-shot mode are promising for semantically similar classes and improve significantly after providing only a few supporting examples for almost all classes. The best results were obtained using a fine-tuned PubMedBERT model, with average F1 scores of 35.44%, 50.10%, 69.94%, and 79.51% for zero-shot, one-shot, 10-shot, and 100-shot NER respectively.Book of abstract: 4th Belgrade Bioinformatics Conference, June 19-23, 202

    Accelerated materials language processing enabled by GPT

    Full text link
    Materials language processing (MLP) is one of the key facilitators of materials science research, as it enables the extraction of structured information from massive materials science literature. Prior works suggested high-performance MLP models for text classification, named entity recognition (NER), and extractive question answering (QA), which require complex model architecture, exhaustive fine-tuning and a large number of human-labelled datasets. In this study, we develop generative pretrained transformer (GPT)-enabled pipelines where the complex architectures of prior MLP models are replaced with strategic designs of prompt engineering. First, we develop a GPT-enabled document classification method for screening relevant documents, achieving comparable accuracy and reliability compared to prior models, with only small dataset. Secondly, for NER task, we design an entity-centric prompts, and learning few-shot of them improved the performance on most of entities in three open datasets. Finally, we develop an GPT-enabled extractive QA model, which provides improved performance and shows the possibility of automatically correcting annotations. While our findings confirm the potential of GPT-enabled MLP models as well as their value in terms of reliability and practicability, our scientific methods and systematic approach are applicable to any materials science domain to accelerate the information extraction of scientific literature

    A Zero-shot and Few-shot Study of Instruction-Finetuned Large Language Models Applied to Clinical and Biomedical Tasks

    Full text link
    We evaluate four state-of-the-art instruction-tuned large language models (LLMs) -- ChatGPT, Flan-T5 UL2, Tk-Instruct, and Alpaca -- on a set of 13 real-world clinical and biomedical natural language processing (NLP) tasks in English, such as named-entity recognition (NER), question-answering (QA), relation extraction (RE), etc. Our overall results demonstrate that the evaluated LLMs begin to approach performance of state-of-the-art models in zero- and few-shot scenarios for most tasks, and particularly well for the QA task, even though they have never seen examples from these tasks before. However, we observed that the classification and RE tasks perform below what can be achieved with a specifically trained model for the medical field, such as PubMedBERT. Finally, we noted that no LLM outperforms all the others on all the studied tasks, with some models being better suited for certain tasks than others.Comment: Under review proces

    Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition

    Full text link
    Despite the recent success achieved by several two-stage prototypical networks in few-shot named entity recognition (NER) task, the overdetected false spans at the span detection stage and the inaccurate and unstable prototypes at the type classification stage remain to be challenging problems. In this paper, we propose a novel Type-Aware Decomposed framework, namely TadNER, to solve these problems. We first present a type-aware span filtering strategy to filter out false spans by removing those semantically far away from type names. We then present a type-aware contrastive learning strategy to construct more accurate and stable prototypes by jointly exploiting support samples and type names as references. Extensive experiments on various benchmarks prove that our proposed TadNER framework yields a new state-of-the-art performance. Our code and data will be available at https://github.com/NLPWM-WHU/TadNER.Comment: Accepted to the Findings of EMNLP 2023, camera ready versio

    FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation

    Full text link
    We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct a thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research. All details and resources about the dataset and baselines are released on http://zhuhao.me/fewrel.Comment: EMNLP 2018. The first four authors contribute equally. The order is determined by dice rolling. Visit our website http://zhuhao.me/fewre

    Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT

    Full text link
    Pretrained contextual representation models (Peters et al., 2018; Devlin et al., 2018) have pushed forward the state-of-the-art on many NLP tasks. A new release of BERT (Devlin, 2018) includes a model simultaneously pretrained on 104 languages with impressive performance for zero-shot cross-lingual transfer on a natural language inference task. This paper explores the broader cross-lingual potential of mBERT (multilingual) as a zero shot language transfer model on 5 NLP tasks covering a total of 39 languages from various language families: NLI, document classification, NER, POS tagging, and dependency parsing. We compare mBERT with the best-published methods for zero-shot cross-lingual transfer and find mBERT competitive on each task. Additionally, we investigate the most effective strategy for utilizing mBERT in this manner, determine to what extent mBERT generalizes away from language specific features, and measure factors that influence cross-lingual transfer.Comment: EMNLP 2019 Camera Read
    • ā€¦
    corecore