6 research outputs found

    Few-shot classification in Named Entity Recognition Task

    Full text link
    For many natural language processing (NLP) tasks the amount of annotated data is limited. This urges a need to apply semi-supervised learning techniques, such as transfer learning or meta-learning. In this work we tackle Named Entity Recognition (NER) task using Prototypical Network - a metric learning technique. It learns intermediate representations of words which cluster well into named entity classes. This property of the model allows classifying words with extremely limited number of training examples, and can potentially be used as a zero-shot learning method. By coupling this technique with transfer learning we achieve well-performing classifiers trained on only 20 instances of a target class.Comment: In proceedings of the 34th ACM/SIGAPP Symposium on Applied Computin

    Template-free Prompt Tuning for Few-shot NER

    Full text link
    Prompt-based methods have been successfully applied in sentence-level few-shot learning tasks, mostly owing to the sophisticated design of templates and label words. However, when applied to token-level labeling tasks such as NER, it would be time-consuming to enumerate the template queries over all potential entity spans. In this work, we propose a more elegant method to reformulate NER tasks as LM problems without any templates. Specifically, we discard the template construction process while maintaining the word prediction paradigm of pre-training models to predict a class-related pivot word (or label word) at the entity position. Meanwhile, we also explore principled ways to automatically search for appropriate label words that the pre-trained models can easily adapt to. While avoiding complicated template-based process, the proposed LM objective also reduces the gap between different objectives used in pre-training and fine-tuning, thus it can better benefit the few-shot performance. Experimental results demonstrate the effectiveness of the proposed method over bert-tagger and template-based method under few-shot setting. Moreover, the decoding speed of the proposed method is up to 1930.12 times faster than the template-based method.Comment: Work in Progres

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail
    corecore