16 research outputs found

    Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions

    Full text link
    Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show that common up-sampling methods, i.e. known as up-convolution or transposed convolution, are causing the inability of such models to reproduce spectral distributions of natural training data correctly. This effect is independent of the underlying architecture and we show that it can be used to easily detect generated data like deepfakes with up to 100% accuracy on public benchmarks. To overcome this drawback of current generative models, we propose to add a novel spectral regularization term to the training optimization objective. We show that this approach not only allows to train spectral consistent GANs that are avoiding high frequency errors. Also, we show that a correct approximation of the frequency spectrum has positive effects on the training stability and output quality of generative networks

    DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning

    Full text link
    Deep learning has proved to be very effective in learning with a large amount of labelled data. Few-shot learning in contrast attempts to learn with only a few labelled data. In this work, we develop methods for few-shot image classification from a new perspective of optimal matching between image regions. We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations to determine image relevance. The EMD generates the optimal matching flows between structural elements that have the minimum matching cost, which is used to calculate the image distance for classification. To generate the important weights of elements in the EMD formulation, we design a cross-reference mechanism, which can effectively alleviate the adverse impact caused by the cluttered background and large intra-class appearance variations. To handle kk-shot classification, we propose to learn a structured fully connected layer that can directly classify dense image representations with the proposed EMD. Based on the implicit function theorem, the EMD can be inserted as a layer into the network for end-to-end training. Our extensive experiments validate the effectiveness of our algorithm which outperforms state-of-the-art methods by a significant margin on four widely used few-shot classification benchmarks, namely, miniImageNet, tieredImageNet, Fewshot-CIFAR100 (FC100) and Caltech-UCSD Birds-200-2011 (CUB).Comment: Extended version of DeepEMD in CVPR2020 (oral
    corecore