651 research outputs found

    Query Understanding in the Age of Large Language Models

    Full text link
    Querying, conversing, and controlling search and information-seeking interfaces using natural language are fast becoming ubiquitous with the rise and adoption of large-language models (LLM). In this position paper, we describe a generic framework for interactive query-rewriting using LLMs. Our proposal aims to unfold new opportunities for improved and transparent intent understanding while building high-performance retrieval systems using LLMs. A key aspect of our framework is the ability of the rewriter to fully specify the machine intent by the search engine in natural language that can be further refined, controlled, and edited before the final retrieval phase. The ability to present, interact, and reason over the underlying machine intent in natural language has profound implications on transparency, ranking performance, and a departure from the traditional way in which supervised signals were collected for understanding intents. We detail the concept, backed by initial experiments, along with open questions for this interactive query understanding framework.Comment: Accepted to GENIR(SIGIR'23

    Large Language Models for Information Retrieval: A Survey

    Full text link
    As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field

    Zero-shot Query Reformulation for Conversational Search

    Full text link
    As the popularity of voice assistants continues to surge, conversational search has gained increased attention in Information Retrieval. However, data sparsity issues in conversational search significantly hinder the progress of supervised conversational search methods. Consequently, researchers are focusing more on zero-shot conversational search approaches. Nevertheless, existing zero-shot methods face three primary limitations: they are not universally applicable to all retrievers, their effectiveness lacks sufficient explainability, and they struggle to resolve common conversational ambiguities caused by omission. To address these limitations, we introduce a novel Zero-shot Query Reformulation (ZeQR) framework that reformulates queries based on previous dialogue contexts without requiring supervision from conversational search data. Specifically, our framework utilizes language models designed for machine reading comprehension tasks to explicitly resolve two common ambiguities: coreference and omission, in raw queries. In comparison to existing zero-shot methods, our approach is universally applicable to any retriever without additional adaptation or indexing. It also provides greater explainability and effectively enhances query intent understanding because ambiguities are explicitly and proactively resolved. Through extensive experiments on four TREC conversational datasets, we demonstrate the effectiveness of our method, which consistently outperforms state-of-the-art baselines.Comment: Accepted by the 9th ACM SIGIR International Conference on the Theory of Information Retrieva

    5IDER: Unified Query Rewriting for Steering, Intent Carryover, Disfluencies, Entity Carryover and Repair

    Full text link
    Providing voice assistants the ability to navigate multi-turn conversations is a challenging problem. Handling multi-turn interactions requires the system to understand various conversational use-cases, such as steering, intent carryover, disfluencies, entity carryover, and repair. The complexity of this problem is compounded by the fact that these use-cases mix with each other, often appearing simultaneously in natural language. This work proposes a non-autoregressive query rewriting architecture that can handle not only the five aforementioned tasks, but also complex compositions of these use-cases. We show that our proposed model has competitive single task performance compared to the baseline approach, and even outperforms a fine-tuned T5 model in use-case compositions, despite being 15 times smaller in parameters and 25 times faster in latency.Comment: Interspeech 202

    Improving Conversational Passage Re-ranking with View Ensemble

    Full text link
    This paper presents ConvRerank, a conversational passage re-ranker that employs a newly developed pseudo-labeling approach. Our proposed view-ensemble method enhances the quality of pseudo-labeled data, thus improving the fine-tuning of ConvRerank. Our experimental evaluation on benchmark datasets shows that combining ConvRerank with a conversational dense retriever in a cascaded manner achieves a good balance between effectiveness and efficiency. Compared to baseline methods, our cascaded pipeline demonstrates lower latency and higher top-ranking effectiveness. Furthermore, the in-depth analysis confirms the potential of our approach to improving the effectiveness of conversational search.Comment: SIGIR 202

    Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting

    Full text link
    Query rewriting plays a vital role in enhancing conversational search by transforming context-dependent user queries into standalone forms. Existing approaches primarily leverage human-rewritten queries as labels to train query rewriting models. However, human rewrites may lack sufficient information for optimal retrieval performance. To overcome this limitation, we propose utilizing large language models (LLMs) as query rewriters, enabling the generation of informative query rewrites through well-designed instructions. We define four essential properties for well-formed rewrites and incorporate all of them into the instruction. In addition, we introduce the role of rewrite editors for LLMs when initial query rewrites are available, forming a "rewrite-then-edit" process. Furthermore, we propose distilling the rewriting capabilities of LLMs into smaller models to reduce rewriting latency. Our experimental evaluation on the QReCC dataset demonstrates that informative query rewrites can yield substantially improved retrieval performance compared to human rewrites, especially with sparse retrievers.Comment: 22 pages, accepted to EMNLP Findings 202
    • …
    corecore