3 research outputs found

    Bat echolocation-based algorithm for device discovery in D2D communication

    Get PDF
    Proximal device discovery is an essential initial phase in the installment of a device-to-device communication system in cellular networks. Therefore, an efficient device discovery scheme must be proposed with characteristics of minimum latency, discover maximum devices, and energy-efficient discovery in dense areas. In this paper, a bat echolocation-based algorithm derived from the bat algorithm is proposed and analyzed to fulfill the requirement of a proximal device discovery procedure for the cellular networks. The algorithm is applied to multiple hops and cluster devices when they are in a poor coverage zone. In this proposed algorithm, devices are not required to have prior knowledge of proximal devices, nor device synchronization is needed. It allows devices to start discovering instantly at any time and terminate the proximal device discovery session on completion of the discovery of the required proximal devices. Finally, device feedback is utilized to discover the hop devices in the clusters and analyze proximal discovery in a multi-hop setting. Along with this, a random device mobility pattern is defined based on human movement, and the device discovery algorithm is applied. The device discovery probability is calculated based on the contact duration and meeting time of the devices. We set up an upper bound less than 10 ms in long-term evolution of running time of the bat echolocation-based algorithm; this upper bound signifies the maximum degree of device discovery (more than 75% of the system) and the total number of devices. The outcomes thus imply that the proposed bat echolocation-based algorithm upper bound is better than 10 ms

    Femtocaching assisted multi-source D2D content delivery in cellular networks

    No full text
    Abstract The influxes of diversified services and mass data lead to exponential growth of traffic load in mobile cellular networks. Cache-enabled device-to-device (D2D) communication provides a general framework to alleviate this situation. In contrast to previous single-source D2D models, this paper investigates a comprehensive content delivery framework based on a three-tier heterogeneous network (HetNet), where base station (BS), femtocaching auxiliary equipments (FAEs), and user terminals(UTs) are included. The cooperative D2D communication can be implemented from both FAEs and UTs to handle the ongoing explosive increase in ultra-dense scenario. Moreover, duplicate storage for requesting data in multiple neighbor nodes makes many-to-one D2D communication possible at the user layer. Considering the case that cellular users and D2D links reuse the same resources in the uplink period, the non-outage probability of the cellular communication is defined to guarantee the main communication quality. Under the constraints subject to cumulative interference, an optimization objective function based on multi-source D2D communication is deduced to achieve unprecedented average data rate. Numerical simulations show that our system yields network throughput exponentially while transferring traffic load of the BS reasonably
    corecore