4 research outputs found

    Online learning and detection of faces with low human supervision

    Get PDF
    The final publication is available at link.springer.comWe present an efficient,online,and interactive approach for computing a classifier, called Wild Lady Ferns (WiLFs), for face learning and detection using small human supervision. More precisely, on the one hand, WiLFs combine online boosting and extremely randomized trees (Random Ferns) to compute progressively an efficient and discriminative classifier. On the other hand, WiLFs use an interactive human-machine approach that combines two complementary learning strategies to reduce considerably the degree of human supervision during learning. While the first strategy corresponds to query-by-boosting active learning, that requests human assistance over difficult samples in function of the classifier confidence, the second strategy refers to a memory-based learning which uses ¿ Exemplar-based Nearest Neighbors (¿ENN) to assist automatically the classifier. A pre-trained Convolutional Neural Network (CNN) is used to perform ¿ENN with high-level feature descriptors. The proposed approach is therefore fast (WilFs run in 1 FPS using a code not fully optimized), accurate (we obtain detection rates over 82% in complex datasets), and labor-saving (human assistance percentages of less than 20%). As a byproduct, we demonstrate that WiLFs also perform semi-automatic annotation during learning, as while the classifier is being computed, WiLFs are discovering faces instances in input images which are used subsequently for training online the classifier. The advantages of our approach are demonstrated in synthetic and publicly available databases, showing comparable detection rates as offline approaches that require larger amounts of handmade training data.Peer ReviewedPostprint (author's final draft

    Feedback-Driven Multiclass Active Learning for Data Streams

    No full text
    Active learning is a promising way to efficiently build up training sets with minimal supervision. Most existing methods consider the learning problem in a pool-based setting. However, in a lot of real-world learning tasks, such as crowdsourcing, the unlabeled samples, arrive sequentially in the form of continuous rapid streams. Thus, preparing a pool of unlabeled data for active learning is impractical. Moreover, performing exhaustive search in a data pool is expensive, and therefore unsuitable for supporting on-the-fly interactive learning in large scale data. In this paper, we present a systematic framework for stream-based multi-class active learning. Following the reinforcement learning framework, we propose a feedback-driven active learning approach by adaptively combining different criteria in a time-varying manner. Our method is able to balance exploration and exploitation during the learning process. Extensive evaluation on various benchmark and real-world datasets demonstrates the superiority of our framework over existing methods
    corecore