11,126 research outputs found

    On Continuous-Time Gaussian Channels

    Full text link
    A continuous-time white Gaussian channel can be formulated using a white Gaussian noise, and a conventional way for examining such a channel is the sampling approach based on the Shannon-Nyquist sampling theorem, where the original continuous-time channel is converted to an equivalent discrete-time channel, to which a great variety of established tools and methodology can be applied. However, one of the key issues of this scheme is that continuous-time feedback and memory cannot be incorporated into the channel model. It turns out that this issue can be circumvented by considering the Brownian motion formulation of a continuous-time white Gaussian channel. Nevertheless, as opposed to the white Gaussian noise formulation, a link that establishes the information-theoretic connection between a continuous-time channel under the Brownian motion formulation and its discrete-time counterparts has long been missing. This paper is to fill this gap by establishing causality-preserving connections between continuous-time Gaussian feedback/memory channels and their associated discrete-time versions in the forms of sampling and approximation theorems, which we believe will play important roles in the long run for further developing continuous-time information theory. As an immediate application of the approximation theorem, we propose the so-called approximation approach to examine continuous-time white Gaussian channels in the point-to-point or multi-user setting. It turns out that the approximation approach, complemented by relevant tools from stochastic calculus, can enhance our understanding of continuous-time Gaussian channels in terms of giving alternative and strengthened interpretation to some long-held folklore, recovering "long known" results from new perspectives, and rigorously establishing new results predicted by the intuition that the approximation approach carries

    The Capacity of Channels with Feedback

    Full text link
    We introduce a general framework for treating channels with memory and feedback. First, we generalize Massey's concept of directed information and use it to characterize the feedback capacity of general channels. Second, we present coding results for Markov channels. This requires determining appropriate sufficient statistics at the encoder and decoder. Third, a dynamic programming framework for computing the capacity of Markov channels is presented. Fourth, it is shown that the average cost optimality equation (ACOE) can be viewed as an implicit single-letter characterization of the capacity. Fifth, scenarios with simple sufficient statistics are described

    Effective Capacity in Broadcast Channels with Arbitrary Inputs

    Full text link
    We consider a broadcast scenario where one transmitter communicates with two receivers under quality-of-service constraints. The transmitter initially employs superposition coding strategies with arbitrarily distributed signals and sends data to both receivers. Regarding the channel state conditions, the receivers perform successive interference cancellation to decode their own data. We express the effective capacity region that provides the maximum allowable sustainable data arrival rate region at the transmitter buffer or buffers. Given an average transmission power limit, we provide a two-step approach to obtain the optimal power allocation policies that maximize the effective capacity region. Then, we characterize the optimal decoding regions at the receivers in the space spanned by the channel fading power values. We finally substantiate our results with numerical presentations.Comment: This paper will appear in 14th International Conference on Wired&Wireless Internet Communications (WWIC
    • …
    corecore