854,565 research outputs found
On Using a Support Vector Machine in Learning Feed-Forward Control
For mechatronic motion systems, the performance increases significantly if, besides feedback control, also feed-forward control is used. This feed-forward part should contain the (stable part of the) inverse of the plant. This inverse is difficult to obtain if non-linear dynamics are present. To overcome this problem, learning feed-forward control can be applied. The properties of the learning mechanism are of importance in this setting. In the paper, a support vector machine is proposed as the learning mechanism. It is shown that this mechanism has several advantages over other learning techniques when applied to learning feed-forward control. The method is tested with simulation
Amplified Hopf bifurcations in feed-forward networks
In a previous paper, the authors developed a method for computing normal
forms of dynamical systems with a coupled cell network structure. We now apply
this theory to one-parameter families of homogeneous feed-forward chains with
2-dimensional cells. Our main result is that Hopf bifurcations in such families
generically generate branches of periodic solutions with amplitudes growing
like , , , etc. Such amplified
Hopf branches were previously found by others in a subclass of feed-forward
networks with three cells, first under a normal form assumption and later by
explicit computations. We explain here how these bifurcations arise generically
in a broader class of feed-forward chains of arbitrary length
Dynamics and control of a gas-fired furnace
A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good agreement. A cascade control with feed-forward action has been compared to single feed-back control. Proportional feed-forward action already gives much better results than the latter control
Feed-forward and its role in conditional linear optical quantum dynamics
Nonlinear optical quantum gates can be created probabilistically using only
single photon sources, linear optical elements and photon-number resolving
detectors. These gates are heralded but operate with probabilities much less
than one. There is currently a large gap between the performance of the known
circuits and the established upper bounds on their success probabilities. One
possibility for increasing the probability of success of such gates is
feed-forward, where one attempts to correct certain failure events that
occurred in the gate's operation. In this brief report we examine the role of
feed-forward in improving the success probability. In particular, for the
non-linear sign shift gate, we find that in a three-mode implementation with a
single round of feed-forward the optimal average probability of success is
approximately given by p= 0.272. This value is only slightly larger than the
general optimal success probability without feed-forward, P= 0.25.Comment: 4 pages, 3 eps figures, typeset using RevTex4, problems with figures
resolve
A MRAS-based Learning Feed-forward Controller
Inspired by learning feed–forward control structures, this paper considers the adaptation of the parameters of a model–reference based learning feed–forward controller that realizes an inverse model of the process. The actual process response is determined by a setpoint generator. For linear systems it can be proved that the controlled system is asymptotically stable in the sense of Liapunov. Compared with more standard model reference configurations this system has a superior performance. It is fast, robust and relatively insensitive for noisy measurements. Simulations with an arbitrary second–order process and with a model of a typical fourth–ordermechatronics process demonstrate this
Multivariable Inferential Feed-Forward Control
Two multivariable inferential feed-forward control strategies are proposed in this paper. In the first strategy, the effects of disturbances on the primary process variables are inferred from uncontrolled secondary process variables that are measured on-line. In the second approach, the effects of disturbances on the primary process variables are inferred from the manipulated variables for those controlled secondary process variables that have fast dynamics. The proposed strategies are particularly useful in situations where some disturbances cannot be easily and quickly measured. Robustness analysis of the inferential feed-forward controllers and the selection of appropriate secondary measurements are discussed. Structured singular value analysis is used in assessing the robustness of the inferential feed-forward control systems. The performance characteristics of the two inferential feed-forward control systems are demonstrated by application to a simulated methanol-water separation column. In the first system, the effects of disturbances in feed composition (and feed rate) are inferred from tray temperatures, whereas in the second system, the disturbance effects are inferred from inventory manipulations. Nonlinear dynamic simulation results demonstrate the superior performance of these strategies. Robustness analysis shows that using multiple tray temperatures can improve the robustness of the inferential feed-forward controller, and this conclusion is confirmed by simulation
Increasing efficiency of a linear-optical quantum gate using an electronic feed forward
We have successfully used a fast electronic feed forward to increase the
success probability of a linear optical implementation of a programmable phase
gate from 25% to its theoretical limit of 50%. The feed forward applies a
conditional unitary operation which changes the incorrect output states of the
data qubit to the correct ones. The gate itself rotates an arbitrary quantum
state of the data qubit around the z-axis of the Bloch sphere with the angle of
rotation being fully determined by the state of the program qubit. The gate
implementation is based on fiber optics components. Qubits are encoded into
spatial modes of single photons. The signal from the feed-forward detector is
led directly to a phase modulator using only a passive voltage divider. We have
verified the increase of the success probability and characterized the gate
operation by means of quantum process tomography. We have demonstrated that the
use of the feed forward does not affect either the process fidelity or the
output-state fidelities
- …
