1,590 research outputs found

    Protocols for Integrity Constraint Checking in Federated Databases

    Get PDF
    A federated database is comprised of multiple interconnected database systems that primarily operate independently but cooperate to a certain extent. Global integrity constraints can be very useful in federated databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders traditional constraint management techniques inapplicable. This paper presents a threefold contribution to integrity constraint checking in federated databases: (1) The problem of constraint checking in a federated database environment is clearly formulated. (2) A family of protocols for constraint checking is presented. (3) The differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed by the protocols, and processing and communication costs. Thus, our work yields a suite of options from which a protocol can be chosen to suit the system capabilities and integrity requirements of a particular federated database environment

    Integrity Constraint Checking in Federated Databases

    Get PDF
    A federated database is comprised of multiple interconnected databases that cooperate in an autonomous fashion. Global integrity constraints are very useful in federated databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders traditional constraint management techniques inapplicable. The paper presents a threefold contribution to integrity constraint checking in federated databases: (1) the problem of constraint checking in a federated database environment is clearly formulated; (2) a family of cooperative protocols for constraint checking is presented; (3) the differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed, and costs involved. Thus, we provide a suite of options with protocols for various environments with specific system capabilities and integrity requirement

    The design and implementation of partnet

    Get PDF
    Journal ArticlePartNet is a federated database for providing interactive online access to mechanical parts catalogs. The data contained in the vendor's product database is exported to the federated database using a networkbased distributed database protocol. A Single coherent view of these vendor databases is provided by a Query Server which clients access to pose queries and receive answers. The client interface programs are simple and can be executed on current desktop computers. The system is scaleable to thousands of vendors and tens of thousands of customers. We feel this approach provides better service at less cost than traditional paper or CD ROM catalogs

    Directions for Web and E-Commerce Applications Security

    No full text
    This paper provides directions for web and e-commerce applications security. In particular, access control policies, workflow security, XML security and federated database security issues pertaining to the web and ecommerce applications are discussed

    Extensions to the self protecting object model to facilitate integrity in stationary and mobile hosts

    Get PDF
    M.Sc. (Computer Science)In this dissertation we propose extensions to the Self Protecting Object (SPO) model to facilitate the sharing of information in a more effective manner. We see the sharing ofinformation as the sharing of objects that provide services. Sharing objects effectively is allowing the objects to be used in a secure environment, independent of their location, in a manner usage was intended. The SPO model proposed by Olivier [32] allows for objects in a federated database to be moved from one site to another and ensures that the security policy of the object will always be respected and implemented, regardless of its location. Although the SPO model does indeed allow for objects (information) to be shared effectively, it fails to address issues of maintaining integrity within objects. We therefore define the notion of maintaining integrity within the spa model and propose a model to achieve it. We argue that ensuring an SPO is only used in a way usage was intended does not suffice to ensure integrity. The model we propose is based on ensuring that modifications to an SPO are only executed if the modification does not violate the constraints defined for the Sf'O, The model" allows for an spa to maintain its unique identity in addition to maintaining its integrity. The SPO model is designed to be used in a federated database on sites that are stationary. Therefore, having addressed the issue of maintaining integrity within SPOs on stationary sites in the federated database, we then introduce the notion of a mobile site: a site that will eventually disconnect from the federated database and become unreachable for some time. Introducing the mobile site into the federated database allows us to propose the Mobile Self Protecting Object (MSPO) and its associated architecture. Because of the nature of mobile sites, the original model for maintaining integrity can not be applied to the MSPO architecture. We therefore propose a mechanism (to be implemented in unison with the original model) to ensure the integrity of MSPOs on mobile sites. We then discuss the JASPO prototype. The aim of the prototype was to determine if the Self Protecting Object model was feasible using current development technologies. We examine the requirements identified in order for the prototype to be successful and discuss how these were satisfied. Several modifications were made to the original spa model, including the addition of a new module and the exclusion of others, we discuss these modifications and examine why they were necessary

    Grid Databases for Shared Image Analysis in the MammoGrid Project

    Full text link
    The MammoGrid project aims to prove that Grid infrastructures can be used for collaborative clinical analysis of database-resident but geographically distributed medical images. This requires: a) the provision of a clinician-facing front-end workstation and b) the ability to service real-world clinician queries across a distributed and federated database. The MammoGrid project will prove the viability of the Grid by harnessing its power to enable radiologists from geographically dispersed hospitals to share standardized mammograms, to compare diagnoses (with and without computer aided detection of tumours) and to perform sophisticated epidemiological studies across national boundaries. This paper outlines the approach taken in MammoGrid to seamlessly connect radiologist workstations across a Grid using an "information infrastructure" and a DICOM-compliant object model residing in multiple distributed data stores in Italy and the UKComment: 10 pages, 5 figure
    corecore