74,368 research outputs found
A Prototype Scalable Readout System for Micro-pattern Gas Detectors
A scalable readout system (SRS) is designed to provide a general solution for
different micro-pattern gas detectors. The system mainly consists of three
kinds of modules: the ASIC card, the Adapter card and the Front-End Card (FEC).
The ASIC cards, mounted with particular ASIC chips, are designed for receiving
detector signals. The Adapter card is in charge of digitizing the output
signals from several ASIC cards. The FEC, edged-mounted with the Adapter, has a
FPGA-based reconfigurable logic and I/O interfaces, allowing users to choose
various ASIC cards and Adapters for different types of detectors. The FEC
transfers data through Gigabit Ethernet protocol realized by a TCP processor
(SiTCP) IP core in field-programmable gate arrays (FPGA). The readout system
can be tailored to specific sizes to adapt to the experiment scales and readout
requirements. In this paper, two kinds of multi-channel ASIC chips, VA140 and
AGET, are applied to verify the concept of this SRS architecture. Based on this
VA140 or AGET SRS, one FEC covers 8 ASIC (VA140) cards handling 512 detector
channels, or 4 ASIC (AGET) cards handling 256 detector channels. More FECs can
be assembled in chassis to handle thousands of detector channels.Comment: 6 pages, 7 figures, 2 table
The Parkes front-end controller and noise-adding radiometer
A new front-end controller (FEC) was installed on the 64-m antenna in Parkes, Australia, to support the 1989 Voyager 2 Neptune encounter. The FEC was added to automate operation of the front-end microwave hardware as part of the Deep Space Network's Parkes-Canberra Telemetry Array. Much of the front-end hardware was refurbished and reimplemented from a front-end system installed in 1985 by the European Space Agency for the Uranus encounter; however, the FEC and its associated noise-adding radiometer (NAR) were new Jet Propulsion Laboratory (JPL) designs. Project requirements and other factors led to the development of capabilities not found in standard Deep Space Network (DSN) controllers and radiometers. The Parkes FEC/NAR performed satisfactorily throughout the Neptune encounter and was removed in October 1989
Millimeter-Wave System for High Data Rate Indoor Communications
This paper presents the realization of a wireless Gigabit Ethernet
communication system operating in the 60 GHz band. The system architecture uses
a single carrier modulation. A differential encoded binary phase shift keying
modulation and a differential demodulation scheme are adopted for the
intermediate frequency blocks. The baseband blocks use Reed- Solomon RS (255,
239) coding and decoding for channel forward error correction (FEC). First
results of bit error rate (BER) measurements at 875 Mbps, without channel
coding, are presented for different antennas.Comment: 5 page
Congestion Control using FEC for Conversational Multimedia Communication
In this paper, we propose a new rate control algorithm for conversational
multimedia flows. In our approach, along with Real-time Transport Protocol
(RTP) media packets, we propose sending redundant packets to probe for
available bandwidth. These redundant packets are Forward Error Correction (FEC)
encoded RTP packets. A straightforward interpretation is that if no losses
occur, the sender can increase the sending rate to include the FEC bit rate,
and in the case of losses due to congestion the redundant packets help in
recovering the lost packets. We also show that by varying the FEC bit rate, the
sender is able to conservatively or aggressively probe for available bandwidth.
We evaluate our FEC-based Rate Adaptation (FBRA) algorithm in a network
simulator and in the real-world and compare it to other congestion control
algorithms
Exploiting the Path Propagation Time Differences in Multipath Transmission with FEC
We consider a transmission of a delay-sensitive data stream from a single
source to a single destination. The reliability of this transmission may suffer
from bursty packet losses - the predominant type of failures in today's
Internet. An effective and well studied solution to this problem is to protect
the data by a Forward Error Correction (FEC) code and send the FEC packets over
multiple paths.
In this paper we show that the performance of such a multipath FEC scheme can
often be further improved. Our key observation is that the propagation times on
the available paths often significantly differ, typically by 10-100ms.
We propose to exploit these differences by appropriate packet scheduling that
we call `Spread'. We evaluate our solution with a precise, analytical
formulation and trace-driven simulations. Our studies show that Spread
substantially outperforms the state-of-the-art solutions. It typically achieves
two- to five-fold improvement (reduction) in the effective loss rate. Or
conversely, keeping the same level of effective loss rate, Spread significantly
decreases the observed delays and helps fighting the delay jitter.Comment: 12 page
Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments
In this paper, we compare different metrics to predict the error rate of
optical systems based on nonbinary forward error correction (FEC). It is shown
that the correct metric to predict the performance of coded modulation based on
nonbinary FEC is the mutual information. The accuracy of the prediction is
verified in a detailed example with multiple constellation formats, FEC
overheads in both simulations and optical transmission experiments over a
recirculating loop. It is shown that the employed FEC codes must be universal
if performance prediction based on thresholds is used. A tutorial introduction
into the computation of the threshold from optical transmission measurements is
also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog
- …
