4,402 research outputs found

    Heterogeneous Domain Generalization via Domain Mixup

    Full text link
    One of the main drawbacks of deep Convolutional Neural Networks (DCNN) is that they lack generalization capability. In this work, we focus on the problem of heterogeneous domain generalization which aims to improve the generalization capability across different tasks, which is, how to learn a DCNN model with multiple domain data such that the trained feature extractor can be generalized to supporting recognition of novel categories in a novel target domain. To solve this problem, we propose a novel heterogeneous domain generalization method by mixing up samples across multiple source domains with two different sampling strategies. Our experimental results based on the Visual Decathlon benchmark demonstrates the effectiveness of our proposed method. The code is released in \url{https://github.com/wyf0912/MIXALL

    Federated Domain Generalization: A Survey

    Full text link
    Machine learning typically relies on the assumption that training and testing distributions are identical and that data is centrally stored for training and testing. However, in real-world scenarios, distributions may differ significantly and data is often distributed across different devices, organizations, or edge nodes. Consequently, it is imperative to develop models that can effectively generalize to unseen distributions where data is distributed across different domains. In response to this challenge, there has been a surge of interest in federated domain generalization (FDG) in recent years. FDG combines the strengths of federated learning (FL) and domain generalization (DG) techniques to enable multiple source domains to collaboratively learn a model capable of directly generalizing to unseen domains while preserving data privacy. However, generalizing the federated model under domain shifts is a technically challenging problem that has received scant attention in the research area so far. This paper presents the first survey of recent advances in this area. Initially, we discuss the development process from traditional machine learning to domain adaptation and domain generalization, leading to FDG as well as provide the corresponding formal definition. Then, we categorize recent methodologies into four classes: federated domain alignment, data manipulation, learning strategies, and aggregation optimization, and present suitable algorithms in detail for each category. Next, we introduce commonly used datasets, applications, evaluations, and benchmarks. Finally, we conclude this survey by providing some potential research topics for the future
    • …
    corecore