872,227 research outputs found

    Adversarial Discriminative Heterogeneous Face Recognition

    Full text link
    The gap between sensing patterns of different face modalities remains a challenging problem in heterogeneous face recognition (HFR). This paper proposes an adversarial discriminative feature learning framework to close the sensing gap via adversarial learning on both raw-pixel space and compact feature space. This framework integrates cross-spectral face hallucination and discriminative feature learning into an end-to-end adversarial network. In the pixel space, we make use of generative adversarial networks to perform cross-spectral face hallucination. An elaborate two-path model is introduced to alleviate the lack of paired images, which gives consideration to both global structures and local textures. In the feature space, an adversarial loss and a high-order variance discrepancy loss are employed to measure the global and local discrepancy between two heterogeneous distributions respectively. These two losses enhance domain-invariant feature learning and modality independent noise removing. Experimental results on three NIR-VIS databases show that our proposed approach outperforms state-of-the-art HFR methods, without requiring of complex network or large-scale training dataset

    Interpret Federated Learning with Shapley Values

    Full text link
    Federated Learning is introduced to protect privacy by distributing training data into multiple parties. Each party trains its own model and a meta-model is constructed from the sub models. In this way the details of the data are not disclosed in between each party. In this paper we investigate the model interpretation methods for Federated Learning, specifically on the measurement of feature importance of vertical Federated Learning where feature space of the data is divided into two parties, namely host and guest. For host party to interpret a single prediction of vertical Federated Learning model, the interpretation results, namely the feature importance, are very likely to reveal the protected data from guest party. We propose a method to balance the model interpretability and data privacy in vertical Federated Learning by using Shapley values to reveal detailed feature importance for host features and a unified importance value for federated guest features. Our experiments indicate robust and informative results for interpreting Federated Learning models

    Graph Spectral Feature Learning for Mixed Data of Categorical and Numerical Type

    Full text link
    Feature learning in the presence of a mixed type of variables, numerical and categorical types, is an important issue for related modeling problems. For simple neighborhood queries under mixed data space, standard practice is to consider numerical and categorical variables separately and combining them based on some suitable distance functions. Alternatives, such as Kernel learning or Principal Component do not explicitly consider the inter-dependence structure among the mixed type of variables. In this work, we propose a novel strategy to explicitly model the probabilistic dependence structure among the mixed type of variables by an undirected graph. Spectral decomposition of the graph Laplacian provides the desired feature transformation. The Eigen spectrum of the transformed feature space shows increased separability and more prominent clusterability among the observations. The main novelty of our paper lies in capturing interactions of the mixed feature type in an unsupervised framework using a graphical model. We numerically validate the implications of the feature learning strateg

    Learning to Rank Using Localized Geometric Mean Metrics

    Full text link
    Many learning-to-rank (LtR) algorithms focus on query-independent model, in which query and document do not lie in the same feature space, and the rankers rely on the feature ensemble about query-document pair instead of the similarity between query instance and documents. However, existing algorithms do not consider local structures in query-document feature space, and are fragile to irrelevant noise features. In this paper, we propose a novel Riemannian metric learning algorithm to capture the local structures and develop a robust LtR algorithm. First, we design a concept called \textit{ideal candidate document} to introduce metric learning algorithm to query-independent model. Previous metric learning algorithms aiming to find an optimal metric space are only suitable for query-dependent model, in which query instance and documents belong to the same feature space and the similarity is directly computed from the metric space. Then we extend the new and extremely fast global Geometric Mean Metric Learning (GMML) algorithm to develop a localized GMML, namely L-GMML. Based on the combination of local learned metrics, we employ the popular Normalized Discounted Cumulative Gain~(NDCG) scorer and Weighted Approximate Rank Pairwise (WARP) loss to optimize the \textit{ideal candidate document} for each query candidate set. Finally, we can quickly evaluate all candidates via the similarity between the \textit{ideal candidate document} and other candidates. By leveraging the ability of metric learning algorithms to describe the complex structural information, our approach gives us a principled and efficient way to perform LtR tasks. The experiments on real-world datasets demonstrate that our proposed L-GMML algorithm outperforms the state-of-the-art metric learning to rank methods and the stylish query-independent LtR algorithms regarding accuracy and computational efficiency.Comment: To appear in SIGIR'1

    Inverse Reinforcement Learning via Deep Gaussian Process

    Full text link
    We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Incorporating the IRL engine into the nonlinear latent structure renders existing deep GP inference approaches intractable. To tackle this, we develop a non-standard variational approximation framework which extends previous inference schemes. This allows for approximate Bayesian treatment of the feature space and guards against overfitting. Carrying out representation and inverse reinforcement learning simultaneously within our model outperforms state-of-the-art approaches, as we demonstrate with experiments on standard benchmarks ("object world","highway driving") and a new benchmark ("binary world")

    Domain-Invariant Projection Learning for Zero-Shot Recognition

    Full text link
    Zero-shot learning (ZSL) aims to recognize unseen object classes without any training samples, which can be regarded as a form of transfer learning from seen classes to unseen ones. This is made possible by learning a projection between a feature space and a semantic space (e.g. attribute space). Key to ZSL is thus to learn a projection function that is robust against the often large domain gap between the seen and unseen classes. In this paper, we propose a novel ZSL model termed domain-invariant projection learning (DIPL). Our model has two novel components: (1) A domain-invariant feature self-reconstruction task is introduced to the seen/unseen class data, resulting in a simple linear formulation that casts ZSL into a min-min optimization problem. Solving the problem is non-trivial, and a novel iterative algorithm is formulated as the solver, with rigorous theoretic algorithm analysis provided. (2) To further align the two domains via the learned projection, shared semantic structure among seen and unseen classes is explored via forming superclasses in the semantic space. Extensive experiments show that our model outperforms the state-of-the-art alternatives by significant margins.Comment: Accepted to NIPS 201

    A Novel Perspective to Zero-shot Learning: Towards an Alignment of Manifold Structures via Semantic Feature Expansion

    Full text link
    Zero-shot learning aims at recognizing unseen classes (no training example) with knowledge transferred from seen classes. This is typically achieved by exploiting a semantic feature space shared by both seen and unseen classes, i.e., attribute or word vector, as the bridge. One common practice in zero-shot learning is to train a projection between the visual and semantic feature spaces with labeled seen classes examples. When inferring, this learned projection is applied to unseen classes and recognizes the class labels by some metrics. However, the visual and semantic feature spaces are mutually independent and have quite different manifold structures. Under such a paradigm, most existing methods easily suffer from the domain shift problem and weaken the performance of zero-shot recognition. To address this issue, we propose a novel model called AMS-SFE. It considers the alignment of manifold structures by semantic feature expansion. Specifically, we build upon an autoencoder-based model to expand the semantic features from the visual inputs. Additionally, the expansion is jointly guided by an embedded manifold extracted from the visual feature space of the data. Our model is the first attempt to align both feature spaces by expanding semantic features and derives two benefits: first, we expand some auxiliary features that enhance the semantic feature space; second and more importantly, we implicitly align the manifold structures between the visual and semantic feature spaces; thus, the projection can be better trained and mitigate the domain shift problem. Extensive experiments show significant performance improvement, which verifies the effectiveness of our model

    Learning from Between-class Examples for Deep Sound Recognition

    Full text link
    Deep learning methods have achieved high performance in sound recognition tasks. Deciding how to feed the training data is important for further performance improvement. We propose a novel learning method for deep sound recognition: Between-Class learning (BC learning). Our strategy is to learn a discriminative feature space by recognizing the between-class sounds as between-class sounds. We generate between-class sounds by mixing two sounds belonging to different classes with a random ratio. We then input the mixed sound to the model and train the model to output the mixing ratio. The advantages of BC learning are not limited only to the increase in variation of the training data; BC learning leads to an enlargement of Fisher's criterion in the feature space and a regularization of the positional relationship among the feature distributions of the classes. The experimental results show that BC learning improves the performance on various sound recognition networks, datasets, and data augmentation schemes, in which BC learning proves to be always beneficial. Furthermore, we construct a new deep sound recognition network (EnvNet-v2) and train it with BC learning. As a result, we achieved a performance surpasses the human level.Comment: 13 pages, 6 figures, published as a conference paper at ICLR 201

    Feature grouping from spatially constrained multiplicative interaction

    Full text link
    We present a feature learning model that learns to encode relationships between images. The model is defined as a Gated Boltzmann Machine, which is constrained such that hidden units that are nearby in space can gate each other's connections. We show how frequency/orientation "columns" as well as topographic filter maps follow naturally from training the model on image pairs. The model also helps explain why square-pooling models yield feature groups with similar grouping properties. Experimental results on synthetic image transformations show that spatially constrained gating is an effective way to reduce the number of parameters and thereby to regularize a transformation-learning model.Comment: (new version:) added training formulae; added minor clarification

    Deep Learning for Multi-label Classification

    Full text link
    In multi-label classification, the main focus has been to develop ways of learning the underlying dependencies between labels, and to take advantage of this at classification time. Developing better feature-space representations has been predominantly employed to reduce complexity, e.g., by eliminating non-helpful feature attributes from the input space prior to (or during) training. This is an important task, since many multi-label methods typically create many different copies or views of the same input data as they transform it, and considerable memory can be saved by taking advantage of redundancy. In this paper, we show that a proper development of the feature space can make labels less interdependent and easier to model and predict at inference time. For this task we use a deep learning approach with restricted Boltzmann machines. We present a deep network that, in an empirical evaluation, outperforms a number of competitive methods from the literatur
    • …
    corecore