18,945 research outputs found

    Feature Selection and Dimensionality Reduction in Genomics and Proteomics

    Get PDF
    International audienceFinding reliable, meaningful patterns in data with high numbers of attributes can be extremely difficult. Feature selection helps us to decide what attributes or combination of attributes are most important for finding these patterns. In this chapter, we study feature selection methods for building classification models from high-throughput genomic (microarray) and proteomic (mass spectrometry) data sets. Thousands of feature candidates must be analyzed, compared and combined in such data sets. We describe the basics of four different approaches used for feature selection and illustrate their effects on an MS cancer proteomic data set. The closing discussion provides assistance in performing an analysis in high-dimensional genomic and proteomic data

    Visualizing dimensionality reduction of systems biology data

    Full text link
    One of the challenges in analyzing high-dimensional expression data is the detection of important biological signals. A common approach is to apply a dimension reduction method, such as principal component analysis. Typically, after application of such a method the data is projected and visualized in the new coordinate system, using scatter plots or profile plots. These methods provide good results if the data have certain properties which become visible in the new coordinate system and which were hard to detect in the original coordinate system. Often however, the application of only one method does not suffice to capture all important signals. Therefore several methods addressing different aspects of the data need to be applied. We have developed a framework for linear and non-linear dimension reduction methods within our visual analytics pipeline SpRay. This includes measures that assist the interpretation of the factorization result. Different visualizations of these measures can be combined with functional annotations that support the interpretation of the results. We show an application to high-resolution time series microarray data in the antibiotic-producing organism Streptomyces coelicolor as well as to microarray data measuring expression of cells with normal karyotype and cells with trisomies of human chromosomes 13 and 21

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    Gene Expression based Survival Prediction for Cancer Patients: A Topic Modeling Approach

    Full text link
    Cancer is one of the leading cause of death, worldwide. Many believe that genomic data will enable us to better predict the survival time of these patients, which will lead to better, more personalized treatment options and patient care. As standard survival prediction models have a hard time coping with the high-dimensionality of such gene expression (GE) data, many projects use some dimensionality reduction techniques to overcome this hurdle. We introduce a novel methodology, inspired by topic modeling from the natural language domain, to derive expressive features from the high-dimensional GE data. There, a document is represented as a mixture over a relatively small number of topics, where each topic corresponds to a distribution over the words; here, to accommodate the heterogeneity of a patient's cancer, we represent each patient (~document) as a mixture over cancer-topics, where each cancer-topic is a mixture over GE values (~words). This required some extensions to the standard LDA model eg: to accommodate the "real-valued" expression values - leading to our novel "discretized" Latent Dirichlet Allocation (dLDA) procedure. We initially focus on the METABRIC dataset, which describes breast cancer patients using the r=49,576 GE values, from microarrays. Our results show that our approach provides survival estimates that are more accurate than standard models, in terms of the standard Concordance measure. We then validate this approach by running it on the Pan-kidney (KIPAN) dataset, over r=15,529 GE values - here using the mRNAseq modality - and find that it again achieves excellent results. In both cases, we also show that the resulting model is calibrated, using the recent "D-calibrated" measure. These successes, in two different cancer types and expression modalities, demonstrates the generality, and the effectiveness, of this approach

    Penalized EM algorithm and copula skeptic graphical models for inferring networks for mixed variables

    Full text link
    In this article, we consider the problem of reconstructing networks for continuous, binary, count and discrete ordinal variables by estimating sparse precision matrix in Gaussian copula graphical models. We propose two approaches: â„“1\ell_1 penalized extended rank likelihood with Monte Carlo Expectation-Maximization algorithm (copula EM glasso) and copula skeptic with pair-wise copula estimation for copula Gaussian graphical models. The proposed approaches help to infer networks arising from nonnormal and mixed variables. We demonstrate the performance of our methods through simulation studies and analysis of breast cancer genomic and clinical data and maize genetics data

    Gene ranking and biomarker discovery under correlation

    Full text link
    Biomarker discovery and gene ranking is a standard task in genomic high throughput analysis. Typically, the ordering of markers is based on a stabilized variant of the t-score, such as the moderated t or the SAM statistic. However, these procedures ignore gene-gene correlations, which may have a profound impact on the gene orderings and on the power of the subsequent tests. We propose a simple procedure that adjusts gene-wise t-statistics to take account of correlations among genes. The resulting correlation-adjusted t-scores ("cat" scores) are derived from a predictive perspective, i.e. as a score for variable selection to discriminate group membership in two-class linear discriminant analysis. In the absence of correlation the cat score reduces to the standard t-score. Moreover, using the cat score it is straightforward to evaluate groups of features (i.e. gene sets). For computation of the cat score from small sample data we propose a shrinkage procedure. In a comparative study comprising six different synthetic and empirical correlation structures we show that the cat score improves estimation of gene orderings and leads to higher power for fixed true discovery rate, and vice versa. Finally, we also illustrate the cat score by analyzing metabolomic data. The shrinkage cat score is implemented in the R package "st" available from URL http://cran.r-project.org/web/packages/st/Comment: 18 pages, 5 figures, 1 tabl

    Sparse integrative clustering of multiple omics data sets

    Get PDF
    High resolution microarrays and second-generation sequencing platforms are powerful tools to investigate genome-wide alterations in DNA copy number, methylation and gene expression associated with a disease. An integrated genomic profiling approach measures multiple omics data types simultaneously in the same set of biological samples. Such approach renders an integrated data resolution that would not be available with any single data type. In this study, we use penalized latent variable regression methods for joint modeling of multiple omics data types to identify common latent variables that can be used to cluster patient samples into biologically and clinically relevant disease subtypes. We consider lasso [J. Roy. Statist. Soc. Ser. B 58 (1996) 267-288], elastic net [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 301-320] and fused lasso [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 91-108] methods to induce sparsity in the coefficient vectors, revealing important genomic features that have significant contributions to the latent variables. An iterative ridge regression is used to compute the sparse coefficient vectors. In model selection, a uniform design [Monographs on Statistics and Applied Probability (1994) Chapman & Hall] is used to seek "experimental" points that scattered uniformly across the search domain for efficient sampling of tuning parameter combinations. We compared our method to sparse singular value decomposition (SVD) and penalized Gaussian mixture model (GMM) using both real and simulated data sets. The proposed method is applied to integrate genomic, epigenomic and transcriptomic data for subtype analysis in breast and lung cancer data sets.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS578 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Partial Least Squares: A Versatile Tool for the Analysis of High-Dimensional Genomic Data

    Get PDF
    Partial Least Squares (PLS) is a highly efficient statistical regression technique that is well suited for the analysis of high-dimensional genomic data. In this paper we review the theory and applications of PLS both under methodological and biological points of view. Focusing on microarray expression data we provide a systematic comparison of the PLS approaches currently employed, and discuss problems as different as tumor classification, identification of relevant genes, survival analysis and modeling of gene networks
    • …
    corecore