29 research outputs found

    Finding Objects of Interest in Images using Saliency and Superpixels

    Get PDF
    The ability to automatically find objects of interest in images is useful in the areas of compression, indexing and retrieval, re-targeting, and so on. There are two classes of such algorithms – those that find any object of interest with no prior knowledge, independent of the task, and those that find specific objects of interest known a priori. The former class of algorithms tries to detect objects in images that stand-out, i.e. are salient, by virtue of being different from the rest of the image and consequently capture our attention. The detection is generic in this case as there is no specific object we are trying to locate. The latter class of algorithms detects specific known objects of interest and often requires training using features extracted from known examples. In this thesis we address various aspects of finding objects of interest under the topics of saliency detection and object detection. We present two saliency detection algorithms that rely on the principle of center-surround contrast. These two algorithms are shown to be superior to several state-of-the-art techniques in terms of precision and recall measures with respect to a ground truth. They output full-resolution saliency maps, are simpler to implement, and are computationally more efficient than most existing algorithms. We further establish the relevance of our saliency detection algorithms by using them for the known applications of object segmentation and image re-targeting. We first present three different techniques for salient object segmentation using our saliency maps that are based on clustering, graph-cuts, and geodesic distance based labeling. We then demonstrate the use of our saliency maps for a popular technique of content-aware image resizing and compare the result with that of existing methods. Our saliency maps prove to be a much more effective replacement for conventional gradient maps for providing automatic content-awareness. Just as it is important to find regions of interest in images, it is also important to find interesting images within a large collection of images. We therefore extend the notion of saliency detection in images to image databases. We propose an algorithm for finding salient images in a database. Apart from finding such images we also present two novel techniques for creating visually appealing summaries in the form of collages and mosaics. Finally, we address the problem of finding specific known objects of interest in images. Specifically, we deal with the feature extraction step that is a pre-requisite for any technique in this domain. In this context, we first present a superpixel segmentation algorithm that outperforms previous algorithms in terms quantitative measures of under-segmentation error and boundary recall. Our superpixel segmentation algorithm also offers several other advantages over existing algorithms like compactness, uniform size, control on the number of superpixels, and computational efficiency. We prove the effectiveness of our superpixels by deploying them in existing algorithms, specifically, an object class detection technique and a graph based algorithm, and improving their performance. We also present the result of using our superpixels in a technique for detecting mitochondria in noisy medical images

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Metodi Matriciali per l'Acquisizione Efficiente e la Crittografia di Segnali in Forma Compressa

    Get PDF
    The idea of balancing the resources spent in the acquisition and encoding of natural signals strictly to their intrinsic information content has interested nearly a decade of research under the name of compressed sensing. In this doctoral dissertation we develop some extensions and improvements upon this technique's foundations, by modifying the random sensing matrices on which the signals of interest are projected to achieve different objectives. Firstly, we propose two methods for the adaptation of sensing matrix ensembles to the second-order moments of natural signals. These techniques leverage the maximisation of different proxies for the quantity of information acquired by compressed sensing, and are efficiently applied in the encoding of electrocardiographic tracks with minimum-complexity digital hardware. Secondly, we focus on the possibility of using compressed sensing as a method to provide a partial, yet cryptanalysis-resistant form of encryption; in this context, we show how a random matrix generation strategy with a controlled amount of perturbations can be used to distinguish between multiple user classes with different quality of access to the encrypted information content. Finally, we explore the application of compressed sensing in the design of a multispectral imager, by implementing an optical scheme that entails a coded aperture array and Fabry-Pérot spectral filters. The signal recoveries obtained by processing real-world measurements show promising results, that leave room for an improvement of the sensing matrix calibration problem in the devised imager

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Designing a Contactless, AI System to Measure the Human Body using a Single Camera for the Clothing and Fashion Industry

    Get PDF
    Using a single RGB camera to obtain accurate body dimensions rather than measuring these manually or via more complex multi-camera or more expensive 3D scanners, has a high application potential for the apparel industry. In this thesis, a system that estimates upper human body measurements using a set of computer vision and machine learning techniques. The main steps involve: (1) using a portable camera; (2) improving image quality; (3) isolating the human body from the surrounding environment; (4) performing a calibration step; (5) extracting body features from the image; (6) indicating markers on the image; (7) producing refined final results. In this research, a unique geometric shape is favored, namely the ellipse, to approximate human body main cross sections. We focus on the upper body horizontal slices (i.e. from head to hips) which, we show, can be well represented by varying an ellipse’s eccentricity, this per individual. Then, evaluating each fitted ellipse’s perimeter allows us to obtain better results than the current state-of-the-art for use in the fashion and online retail industry. In our study, I selected a set of two equations, out of many other possible choices, to best estimate upper human body horizontal cross sections via perimeters of fitted ellipses. In this study, I experimented with the system on a diverse sample of 78 participants. The results for the upper human body measurements in comparison to the traditional manual method of tape measurements, when used as a reference, show ±1cm average differences, sufficient for many applications, including online retail

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    An object-based approach to retrieval of image and video content

    Get PDF
    Promising new directions have been opened up for content-based visual retrieval in recent years. Object-based retrieval which allows users to manipulate video objects as part of their searching and browsing interaction, is one of these. It is the purpose of this thesis to constitute itself as a part of a larger stream of research that investigates visual objects as a possible approach to advancing the use of semantics in content-based visual retrieval. The notion of using objects in video retrieval has been seen as desirable for some years, but only very recently has technology started to allow even very basic object-location functions on video. The main hurdles to greater use of objects in video retrieval are the overhead of object segmentation on large amounts of video and the issue of whether objects can actually be used efficiently for multimedia retrieval. Despite this, there are already some examples of work which supports retrieval based on video objects. This thesis investigates an object-based approach to content-based visual retrieval. The main research contributions of this work are a study of shot boundary detection on compressed domain video where a fast detection approach is proposed and evaluated, and a study on the use of objects in interactive image retrieval. An object-based retrieval framework is developed in order to investigate object-based retrieval on a corpus of natural image and video. This framework contains the entire processing chain required to analyse, index and interactively retrieve images and video via object-to-object matching. The experimental results indicate that object-based searching consistently outperforms image-based search using low-level features. This result goes some way towards validating the approach of allowing users to select objects as a basis for searching video archives when the information need dictates it as appropriate
    corecore