163,006 research outputs found

    Sentiment Analysis using an ensemble of Feature Selection Algorithms

    Get PDF
    To determine the opinion of any person experiencing any services or buying any product, the usage of Sentiment Analysis, a continuous research in the field of text mining, is a common practice. It is a process of using computation to identify and categorize opinions expressed in a piece of text. Individuals post their opinion via reviews, tweets, comments or discussions which is our unstructured information. Sentiment analysis gives a general conclusion of audits which benefit clients, individuals or organizations for decision making. The primary point of this paper is to perform an ensemble approach on feature reduction methods identified with natural language processing and performing the analysis based on the results. An ensemble approach is a process of combining two or more methodologies. The feature reduction methods used are Principal Component Analysis (PCA) for feature extraction and Pearson Chi squared statistical test for feature selection. The fundamental commitment of this paper is to experiment whether combined use of cautious feature determination and existing classification methodologies can yield better accuracy

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring
    corecore