125,121 research outputs found

    RadarSLAM: Radar based Large-Scale SLAM in All Weathers

    Full text link
    Numerous Simultaneous Localization and Mapping (SLAM) algorithms have been presented in last decade using different sensor modalities. However, robust SLAM in extreme weather conditions is still an open research problem. In this paper, RadarSLAM, a full radar based graph SLAM system, is proposed for reliable localization and mapping in large-scale environments. It is composed of pose tracking, local mapping, loop closure detection and pose graph optimization, enhanced by novel feature matching and probabilistic point cloud generation on radar images. Extensive experiments are conducted on a public radar dataset and several self-collected radar sequences, demonstrating the state-of-the-art reliability and localization accuracy in various adverse weather conditions, such as dark night, dense fog and heavy snowfall

    Efficient Image-Space Extraction and Representation of 3D Surface Topography

    Full text link
    Surface topography refers to the geometric micro-structure of a surface and defines its tactile characteristics (typically in the sub-millimeter range). High-resolution 3D scanning techniques developed recently enable the 3D reconstruction of surfaces including their surface topography. In his paper, we present an efficient image-space technique for the extraction of surface topography from high-resolution 3D reconstructions. Additionally, we filter noise and enhance topographic attributes to obtain an improved representation for subsequent topography classification. Comprehensive experiments show that the our representation captures well topographic attributes and significantly improves classification performance compared to alternative 2D and 3D representations.Comment: Initial version of the paper accepted at the IEEE ICIP Conference 201

    Force field feature extraction for ear biometrics

    No full text
    The overall objective in defining feature space is to reduce the dimensionality of the original pattern space, whilst maintaining discriminatory power for classification. To meet this objective in the context of ear biometrics a new force field transformation treats the image as an array of mutually attracting particles that act as the source of a Gaussian force field. Underlying the force field there is a scalar potential energy field, which in the case of an ear takes the form of a smooth surface that resembles a small mountain with a number of peaks joined by ridges. The peaks correspond to potential energy wells and to extend the analogy the ridges correspond to potential energy channels. Since the transform also turns out to be invertible, and since the surface is otherwise smooth, information theory suggests that much of the information is transferred to these features, thus confirming their efficacy. We previously described how field line feature extraction, using an algorithm similar to gradient descent, exploits the directional properties of the force field to automatically locate these channels and wells, which then form the basis of characteristic ear features. We now show how an analysis of the mechanism of this algorithmic approach leads to a closed analytical description based on the divergence of force direction, which reveals that channels and wells are really manifestations of the same phenomenon. We further show that this new operator, with its own distinct advantages, has a striking similarity to the Marr-Hildreth operator, but with the important difference that it is non-linear. As well as addressing faster implementation, invertibility, and brightness sensitivity, the technique is also validated by performing recognition on a database of ears selected from the XM2VTS face database, and by comparing the results with the more established technique of Principal Components Analysis. This confirms not only that ears do indeed appear to have potential as a biometric, but also that the new approach is well suited to their description, being robust especially in the presence of noise, and having the advantage that the ear does not need to be explicitly extracted from the background
    • ā€¦
    corecore