2,838 research outputs found

    Automatic Classification of Human Epithelial Type 2 Cell Indirect Immunofluorescence Images using Cell Pyramid Matching

    Get PDF
    This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluorescence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the large range of antigens that can be detected. However, it suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg. speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. We propose a novel automatic cell image classification method termed Cell Pyramid Matching (CPM), which is comprised of regional histograms of visual words coupled with the Multiple Kernel Learning framework. We present a study of several variations of generating histograms and show the efficacy of the system on two publicly available datasets: the ICPR HEp-2 cell classification contest dataset and the SNPHEp-2 dataset.Comment: arXiv admin note: substantial text overlap with arXiv:1304.126

    An automated pattern recognition system for classifying indirect immunofluorescence images for HEp-2 cells and specimens

    Get PDF
    AbstractImmunofluorescence antinuclear antibody tests are important for diagnosis and management of autoimmune conditions; a key step that would benefit from reliable automation is the recognition of subcellular patterns suggestive of different diseases. We present a system to recognize such patterns, at cellular and specimen levels, in images of HEp-2 cells. Ensembles of SVMs were trained to classify cells into six classes based on sparse encoding of texture features with cell pyramids, capturing spatial, multi-scale structure. A similar approach was used to classify specimens into seven classes. Software implementations were submitted to an international contest hosted by ICPR 2014 (Performance Evaluation of Indirect Immunofluorescence Image Analysis Systems). Mean class accuracies obtained on heldout test data sets were 87.1% and 88.5% for cell and specimen classification respectively. These were the highest achieved in the competition, suggesting that our methods are state-of-the-art. We provide detailed descriptions and extensive experiments with various features and encoding methods

    Classification of Human Epithelial Type 2 Cell Indirect Immunofluoresence Images via Codebook Based Descriptors

    Full text link
    The Anti-Nuclear Antibody (ANA) clinical pathology test is commonly used to identify the existence of various diseases. A hallmark method for identifying the presence of ANAs is the Indirect Immunofluorescence method on Human Epithelial (HEp-2) cells, due to its high sensitivity and the large range of antigens that can be detected. However, the method suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg., speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. In this paper, we propose a cell classification system comprised of a dual-region codebook-based descriptor, combined with the Nearest Convex Hull Classifier. We evaluate the performance of several variants of the descriptor on two publicly available datasets: ICPR HEp-2 cell classification contest dataset and the new SNPHEp-2 dataset. To our knowledge, this is the first time codebook-based descriptors are applied and studied in this domain. Experiments show that the proposed system has consistent high performance and is more robust than two recent CAD systems

    HEP-2 CELL IMAGES FLUORESCENCE INTENSITY CLASSIFICATION TO DETERMINE POSITIVITY BASED ON NEURAL NETWORK AMIN

    Get PDF
    Nowadays, the recommended method for detection of anti-nuclear auto-antibodies is by using Indirect Immunofluorescence (IIF). The increasing of test demands on classification of Hep-2 cell images force the physicians to carry out the test faster, resulting bad quality results. IIF diagnosis requires estimating the fluorescence intensity of the serum and this will be observed. As there are subjective and inter/intra laboratory perception of the results, the development of computer-aided diagnosis (CAD) tools is used to support the decision. In this report, we propose the classification technique based on Artificial Neural Network (ANN) that can classify the Hep-2 cell images into 3 classes namely positive, negative and intermediate,specifically to determine the presence of antinuclear autoantibodies (ANA)
    • …
    corecore