1,584,707 research outputs found
Topological Feature Based Classification
There has been a lot of interest in developing algorithms to extract clusters
or communities from networks. This work proposes a method, based on
blockmodelling, for leveraging communities and other topological features for
use in a predictive classification task. Motivated by the issues faced by the
field of community detection and inspired by recent advances in Bayesian topic
modelling, the presented model automatically discovers topological features
relevant to a given classification task. In this way, rather than attempting to
identify some universal best set of clusters for an undefined goal, the aim is
to find the best set of clusters for a particular purpose.
Using this method, topological features can be validated and assessed within
a given context by their predictive performance.
The proposed model differs from other relational and semi-supervised learning
models as it identifies topological features to explain the classification
decision. In a demonstration on a number of real networks the predictive
capability of the topological features are shown to rival the performance of
content based relational learners. Additionally, the model is shown to
outperform graph-based semi-supervised methods on directed and approximately
bipartite networks.Comment: Awarded 3rd Best Student Paper at 14th International Conference on
Information Fusion 201
Feature Extraction and Classification of Automatically Segmented Lung Lesion Using Improved Toboggan Algorithm
The accurate detection of lung lesions from computed tomography (CT) scans is essential for clinical diagnosis. It provides valuable information for treatment of lung cancer. However, the process is exigent to achieve a fully automatic lesion detection. Here, a novel segmentation algorithm is proposed, it's an improved toboggan algorithm with a three-step framework, which includes automatic seed point selection, multi-constraints lesion extraction and the lesion refinement. Then, the features like local binary pattern (LBP), wavelet, contourlet, grey level co-occurence matrix (GLCM) are applied to each region of interest of the segmented lung lesion image to extract the texture features such as contrast, homogeneity, energy, entropy and statistical extraction like mean, variance, standard deviation, convolution of modulated and normal frequencies. Finally, support vector machine (SVM) and K-nearest neighbour (KNN) classifiers are applied to classify the abnormal region based on the performance of the extracted features and their performance is been compared. The accuracy of 97.8% is been obtained by using SVM classifier when compared to KNN classifier. This approach does not require any human interaction for lesion detection. Thus, the improved toboggan algorithm can achieve precise lung lesion segmentation in CT images. The features extracted also helps to classify the lesion region of lungs efficiently
Feature selection for modular GA-based classification
Genetic algorithms (GAs) have been used as conventional methods for classifiers to adaptively evolve solutions for classification problems. Feature selection plays an important role in finding relevant features in classification. In this paper, feature selection is explored with modular GA-based classification. A new feature selection technique, Relative Importance Factor (RIF), is proposed to find less relevant features in the input domain of each class module. By removing these features, it is aimed to reduce the classification error and dimensionality of classification problems. Benchmark classification data sets are used to evaluate the proposed approach. The experiment results show that RIF can be used to find less relevant features and help achieve lower classification error with the feature space dimension reduced
Feature and Variable Selection in Classification
The amount of information in the form of features and variables avail- able
to machine learning algorithms is ever increasing. This can lead to classifiers
that are prone to overfitting in high dimensions, high di- mensional models do
not lend themselves to interpretable results, and the CPU and memory resources
necessary to run on high-dimensional datasets severly limit the applications of
the approaches. Variable and feature selection aim to remedy this by finding a
subset of features that in some way captures the information provided best. In
this paper we present the general methodology and highlight some specific
approaches.Comment: Part of master seminar in document analysis held by Marcus
Eichenberger-Liwick
An analysis of Feature extraction and Classification Algorithms for Dangerous Object Detection
One of the important practical applications of object detection and image classification can be for security enhancement. If dangerous objects e.g. knives can be identified automatically, then a lot of violence can be prevented. For this purpose, various different algorithms and methods are out there that can be used. In this paper, four of them have been investigated to find out which can identify knives from a dataset of images more accurately. Among Bag of Words, HOG-SVM, CNN and pre-trained Alexnet CNN, the deep learning CNN methods are found to give best results, though they consume significantly more resources
An incremental approach to MSE-based feature selection
Feature selection plays an important role in classification systems. Using classifier error rate as the evaluation function, feature selection is integrated with incremental training. A neural network classifier is implemented with an incremental training approach to detect and discard irrelevant features. By learning attributes one after another, our classifier can find directly the attributes that make no contribution to classification. These attributes are marked and considered for removal. Incorporated with a Minimum Squared Error (MSE) based feature ranking scheme, four batch removal methods based on classifier error rate have been developed to discard irrelevant features. These feature selection methods reduce the computational complexity involved in searching among a large number of possible solutions significantly. Experimental results show that our feature selection methods work well on several benchmark problems compared with other feature selection methods. The selected subsets are further validated by a Constructive Backpropagation (CBP) classifier, which confirms increased classification accuracy and reduced training cost
- …
