44,670 research outputs found

    Feasible combinatorial matrix theory

    Full text link
    We show that the well-known Konig's Min-Max Theorem (KMM), a fundamental result in combinatorial matrix theory, can be proven in the first order theory \LA with induction restricted to Σ1B\Sigma_1^B formulas. This is an improvement over the standard textbook proof of KMM which requires Π2B\Pi_2^B induction, and hence does not yield feasible proofs --- while our new approach does. \LA is a weak theory that essentially captures the ring properties of matrices; however, equipped with Σ1B\Sigma_1^B induction \LA is capable of proving KMM, and a host of other combinatorial properties such as Menger's, Hall's and Dilworth's Theorems. Therefore, our result formalizes Min-Max type of reasoning within a feasible framework

    Solving rank-constrained semidefinite programs in exact arithmetic

    Full text link
    We consider the problem of minimizing a linear function over an affine section of the cone of positive semidefinite matrices, with the additional constraint that the feasible matrix has prescribed rank. When the rank constraint is active, this is a non-convex optimization problem, otherwise it is a semidefinite program. Both find numerous applications especially in systems control theory and combinatorial optimization, but even in more general contexts such as polynomial optimization or real algebra. While numerical algorithms exist for solving this problem, such as interior-point or Newton-like algorithms, in this paper we propose an approach based on symbolic computation. We design an exact algorithm for solving rank-constrained semidefinite programs, whose complexity is essentially quadratic on natural degree bounds associated to the given optimization problem: for subfamilies of the problem where the size of the feasible matrix is fixed, the complexity is polynomial in the number of variables. The algorithm works under assumptions on the input data: we prove that these assumptions are generically satisfied. We also implement it in Maple and discuss practical experiments.Comment: Published at ISSAC 2016. Extended version submitted to the Journal of Symbolic Computatio

    Combinatorial simplex algorithms can solve mean payoff games

    Full text link
    A combinatorial simplex algorithm is an instance of the simplex method in which the pivoting depends on combinatorial data only. We show that any algorithm of this kind admits a tropical analogue which can be used to solve mean payoff games. Moreover, any combinatorial simplex algorithm with a strongly polynomial complexity (the existence of such an algorithm is open) would provide in this way a strongly polynomial algorithm solving mean payoff games. Mean payoff games are known to be in NP and co-NP; whether they can be solved in polynomial time is an open problem. Our algorithm relies on a tropical implementation of the simplex method over a real closed field of Hahn series. One of the key ingredients is a new scheme for symbolic perturbation which allows us to lift an arbitrary mean payoff game instance into a non-degenerate linear program over Hahn series.Comment: v1: 15 pages, 3 figures; v2: improved presentation, introduction expanded, 18 pages, 3 figure

    Product Multicommodity Flow in Wireless Networks

    Get PDF
    We provide a tight approximate characterization of the nn-dimensional product multicommodity flow (PMF) region for a wireless network of nn nodes. Separate characterizations in terms of the spectral properties of appropriate network graphs are obtained in both an information theoretic sense and for a combinatorial interference model (e.g., Protocol model). These provide an inner approximation to the n2n^2 dimensional capacity region. These results answer the following questions which arise naturally from previous work: (a) What is the significance of 1/n1/\sqrt{n} in the scaling laws for the Protocol interference model obtained by Gupta and Kumar (2000)? (b) Can we obtain a tight approximation to the "maximum supportable flow" for node distributions more general than the geometric random distribution, traffic models other than randomly chosen source-destination pairs, and under very general assumptions on the channel fading model? We first establish that the random source-destination model is essentially a one-dimensional approximation to the capacity region, and a special case of product multi-commodity flow. Building on previous results, for a combinatorial interference model given by a network and a conflict graph, we relate the product multicommodity flow to the spectral properties of the underlying graphs resulting in computational upper and lower bounds. For the more interesting random fading model with additive white Gaussian noise (AWGN), we show that the scaling laws for PMF can again be tightly characterized by the spectral properties of appropriately defined graphs. As an implication, we obtain computationally efficient upper and lower bounds on the PMF for any wireless network with a guaranteed approximation factor.Comment: Revised version of "Capacity-Delay Scaling in Arbitrary Wireless Networks" submitted to the IEEE Transactions on Information Theory. Part of this work appeared in the Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2005, and the Internation Symposium on Information Theory (ISIT), 200
    • …
    corecore