1,414 research outputs found

    Communicating Correlated Sources Over an Interference Channel

    Full text link
    A new coding technique, based on \textit{fixed block-length} codes, is proposed for the problem of communicating a pair of correlated sources over a 2βˆ’2-user interference channel. Its performance is analyzed to derive a new set of sufficient conditions. The latter is proven to be strictly less binding than the current known best, which is due to Liu and Chen [Dec, 2011]. Our findings are inspired by Dueck's example [March, 1981]

    Cores of Cooperative Games in Information Theory

    Get PDF
    Cores of cooperative games are ubiquitous in information theory, and arise most frequently in the characterization of fundamental limits in various scenarios involving multiple users. Examples include classical settings in network information theory such as Slepian-Wolf source coding and multiple access channels, classical settings in statistics such as robust hypothesis testing, and new settings at the intersection of networking and statistics such as distributed estimation problems for sensor networks. Cooperative game theory allows one to understand aspects of all of these problems from a fresh and unifying perspective that treats users as players in a game, sometimes leading to new insights. At the heart of these analyses are fundamental dualities that have been long studied in the context of cooperative games; for information theoretic purposes, these are dualities between information inequalities on the one hand and properties of rate, capacity or other resource allocation regions on the other.Comment: 12 pages, published at http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/318704 in EURASIP Journal on Wireless Communications and Networking, Special Issue on "Theory and Applications in Multiuser/Multiterminal Communications", April 200

    Network Information Flow with Correlated Sources

    Full text link
    In this paper, we consider a network communications problem in which multiple correlated sources must be delivered to a single data collector node, over a network of noisy independent point-to-point channels. We prove that perfect reconstruction of all the sources at the sink is possible if and only if, for all partitions of the network nodes into two subsets S and S^c such that the sink is always in S^c, we have that H(U_S|U_{S^c}) < \sum_{i\in S,j\in S^c} C_{ij}. Our main finding is that in this setup a general source/channel separation theorem holds, and that Shannon information behaves as a classical network flow, identical in nature to the flow of water in pipes. At first glance, it might seem surprising that separation holds in a fairly general network situation like the one we study. A closer look, however, reveals that the reason for this is that our model allows only for independent point-to-point channels between pairs of nodes, and not multiple-access and/or broadcast channels, for which separation is well known not to hold. This ``information as flow'' view provides an algorithmic interpretation for our results, among which perhaps the most important one is the optimality of implementing codes using a layered protocol stack.Comment: Final version, to appear in the IEEE Transactions on Information Theory -- contains (very) minor changes based on the last round of review

    Infinite-message Interactive Function Computation in Collocated Networks

    Full text link
    An interactive function computation problem in a collocated network is studied in a distributed block source coding framework. With the goal of computing a desired function at the sink, the source nodes exchange messages through a sequence of error-free broadcasts. The infinite-message minimum sum-rate is viewed as a functional of the joint source pmf and is characterized as the least element in a partially ordered family of functionals having certain convex-geometric properties. This characterization leads to a family of lower bounds for the infinite-message minimum sum-rate and a simple optimality test for any achievable infinite-message sum-rate. An iterative algorithm for evaluating the infinite-message minimum sum-rate functional is proposed and is demonstrated through an example of computing the minimum function of three sources.Comment: 5 pages. 2 figures. This draft has been submitted to IEEE International Symposium on Information Theory (ISIT) 201

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE
    • …
    corecore