122 research outputs found

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Ieee access special section editorial: Cloud and big data-based next-generation cognitive radio networks

    Get PDF
    In cognitive radio networks (CRN), secondary users (SUs) are required to detect the presence of the licensed users, known as primary users (PUs), and to find spectrum holes for opportunistic spectrum access without causing harmful interference to PUs. However, due to complicated data processing, non-real-Time information exchange and limited memory, SUs often suffer from imperfect sensing and unreliable spectrum access. Cloud computing can solve this problem by allowing the data to be stored and processed in a shared environment. Furthermore, the information from a massive number of SUs allows for more comprehensive information exchanges to assist the

    TeamUp5G: a multidisciplinary approach to training and research on new RAN techniques for 5G ultra-dense mobile networks

    Get PDF
    Proceeding of: 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, (CSNDSP), 20-22, July 2020, (online).This paper presents a summary of the main research directions being followed in TeamUp5G European Training Network, teaming up a new generation of researchers and entrepreneurs ready to address complex engineering problems and innovation to work both at university and industry in the 5G field. This project is focused on new radio access network (RAN) techniques for 5G, considering ultradense mobile networks as a key ingredient of the actual mobile networks and their evolution. Research covers a wide spread of topics from physical layer and medium access control to applications, looking at spectrum sharing and energy efficiency as important features.This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie ETN TeamUp5G, grant agreement No. 813391
    • …
    corecore