578 research outputs found

    Optical coherence tomography-based consensus definition for lamellar macular hole.

    Get PDF
    BackgroundA consensus on an optical coherence tomography definition of lamellar macular hole (LMH) and similar conditions is needed.MethodsThe panel reviewed relevant peer-reviewed literature to reach an accord on LMH definition and to differentiate LMH from other similar conditions.ResultsThe panel reached a consensus on the definition of three clinical entities: LMH, epiretinal membrane (ERM) foveoschisis and macular pseudohole (MPH). LMH definition is based on three mandatory criteria and three optional anatomical features. The three mandatory criteria are the presence of irregular foveal contour, the presence of a foveal cavity with undermined edges and the apparent loss of foveal tissue. Optional anatomical features include the presence of epiretinal proliferation, the presence of a central foveal bump and the disruption of the ellipsoid zone. ERM foveoschisis definition is based on two mandatory criteria: the presence of ERM and the presence of schisis at the level of Henle's fibre layer. Three optional anatomical features can also be present: the presence of microcystoid spaces in the inner nuclear layer (INL), an increase of retinal thickness and the presence of retinal wrinkling. MPH definition is based on three mandatory criteria and two optional anatomical features. Mandatory criteria include the presence of a foveal sparing ERM, the presence of a steepened foveal profile and an increased central retinal thickness. Optional anatomical features are the presence of microcystoid spaces in the INL and a normal retinal thickness.ConclusionsThe use of the proposed definitions may provide uniform language for clinicians and future research

    Smart Surgical Microscope based on Optical Coherence Domain Reflectometry

    Get PDF
    Department of Biomedical EngineeringOver the several decades, there have been clinical needs that requires advanced technologies in medicine. Optical coherence tomography (OCT), one of the newly emerged medical imaging devices, provides non-invasive cross-sectional images in high resolution which is mainly used in ophthalmology. However, due to the limited penetration depth of 1-2 mm in bio-samples, there is a limit to be widely used. In order to easily integrate with existing medical tools and be convenient to users, it is necessary that the sample unit of OCT should be compact and simple. In this study, we developed high-speed swept-source OCT (SS-OCT) for advanced screening of otolaryngology. Synchronized signal sampling with a high-speed digitizer using a clock signal from a swept laser source, its trigger signal is also used to synchronize with the movement of the scanning mirror. The SS-OCT system can reliably provide high-throughput images, and two-axis scanning of galvano mirrors enables real-time acquisition of 3D data. Graphic processing unit (GPU) can performs high-speed data processing through parallel programming, and can also implement perspective projection 3D OCT visualization with optimal ray casting techniques. In the Clinical Study of Otolaryngology, OCT was applied to identify the microscopic extrathyroidal extension (mETE) of papillary thyroid cancer (PTC). As a result to detect the mETE of around 60% in conventional ultrasonography, it could be improved to 84.1% accuracy in our study. The detection ratio of the mETE was calculated by the pathologist analyzing the histologic image. In chapter 3, we present a novel study using combined OCT system integrated with a conventional surgical microscope. In the current set-up of surgical microscope, only two-dimensional microscopic images through the eyepiece view are provided to the surgeon. Thus, image-guided surgery, which provides real-time image information of the tissues or the organs, has been developed as an advanced surgical technique. This study illustrate newly designed optical set-up of smart surgical microscope that combined sample arm of the OCT with an existing microscope. Specifically, we used a beam projector to overlay OCT images on existing eyepiece views, and demonstrated augmented reality images. In chapter 4, in order to develop novel microsurgical instruments, optical coherence domain reflectometry (OCDR) was applied. Introduces smart surgical forceps using OCDR as a sensor that provides high-speed, high-resolution distance information in the tissue. To attach the sensor to the forceps, the lensed fiber which is a small and high sensitivity sensor was fabricated and the results are shown to be less affected by the tilt angle. In addition, the piezo actuator compensates the hand tremor, resulting in a reduction in the human hand tremor of 5 to 15 Hz. Finally, M-mode OCT needle is proposed for microsurgery guidance in ophthalmic surgery. Stepwise transitional core (STC) fiber was applied as a sensor to measure information within the tissue and attached to a 26 gauge needle. It shows the modified OCT system and the position-guided needle design of the sample stage and shows the algorithm flowchart of M-mode OCT imaging software. The developed M-mode OCT needle has been applied to animal studies using rabbit eyes and demonstrates the big-bubble deep anterior lamellar keratoplasty (DALK) surgery for corneal transplantation. Through this study, we propose a novel microsurgical instrument for lamellar keratoplasty and evaluate its feasibility with conventional regular OCT system images. In conclusion, for fundamental study required new augmented reality guided surgery with smart surgical microscope, it is expected that OCT combined with surgical microscope can be widely used. We demonstrated a novel microsurgical instrument to share with light source and the various optical components. Acquired information throughout our integrated system would be a key method to meet a wide range of different clinical needs in the real world.ope

    Multimodal optical systems for clinical oncology

    Get PDF
    This thesis presents three multimodal optical (light-based) systems designed to improve the capabilities of existing optical modalities for cancer diagnostics and theranostics. Optical diagnostic and therapeutic modalities have seen tremendous success in improving the detection, monitoring, and treatment of cancer. For example, optical spectroscopies can accurately distinguish between healthy and diseased tissues, fluorescence imaging can light up tumours for surgical guidance, and laser systems can treat many epithelial cancers. However, despite these advances, prognoses for many cancers remain poor, positive margin rates following resection remain high, and visual inspection and palpation remain crucial for tumour detection. The synergistic combination of multiple optical modalities, as presented here, offers a promising solution. The first multimodal optical system (Chapter 3) combines Raman spectroscopic diagnostics with photodynamic therapy using a custom-built multimodal optical probe. Crucially, this system demonstrates the feasibility of nanoparticle-free theranostics, which could simplify the clinical translation of cancer theranostic systems without sacrificing diagnostic or therapeutic benefit. The second system (Chapter 4) applies computer vision to Raman spectroscopic diagnostics to achieve spatial spectroscopic diagnostics. It provides an augmented reality display of the surgical field-of-view, overlaying spatially co-registered spectroscopic diagnoses onto imaging data. This enables the translation of Raman spectroscopy from a 1D technique to a 2D diagnostic modality and overcomes the trade-off between diagnostic accuracy and field-of-view that has limited optical systems to date. The final system (Chapter 5) integrates fluorescence imaging and Raman spectroscopy for fluorescence-guided spatial spectroscopic diagnostics. This facilitates macroscopic tumour identification to guide accurate spectroscopic margin delineation, enabling the spectroscopic examination of suspicious lesions across large tissue areas. Together, these multimodal optical systems demonstrate that the integration of multiple optical modalities has potential to improve patient outcomes through enhanced tumour detection and precision-targeted therapies.Open Acces

    Opportunities for using eye tracking technology in manufacturing and logistics: Systematic literature review and research agenda

    Get PDF
    Workers play essential roles in manufacturing and logistics. Releasing workers from routine tasks and enabling them to focus on creative, value-adding activities can enhance their performance and wellbeing, and it is also key to the successful implementation of Industry 4.0. One technology that can help identify patterns of worker-system interaction is Eye Tracking (ET), which is a non-intrusive technology for measuring human eye movements. ET can provide moment-by-moment insights into the cognitive state of the subject during task execution, which can improve our understanding of how humans behave and make decisions within complex systems. It also enables explorations of the subject’s interaction mode with the working environment. Earlier research has investigated the use of ET in manufacturing and logistics, but the literature is fragmented and has not yet been discussed in a literature review yet. This article therefore conducts a systematic literature review to explore the applications of ET, summarise its benefits, and outline future research opportunities of using ET in manufacturing and logistics. We first propose a conceptual framework to guide our study and then conduct a systematic literature search in scholarly databases, obtaining 71 relevant papers. Building on the proposed framework, we systematically review the use of ET and categorize the identified papers according to their application in manufacturing (product development, production, quality inspection) and logistics. Our results reveal that ET has several use cases in the manufacturing sector, but that its application in logistics has not been studied extensively so far. We summarize the benefits of using ET in terms of process performance, human performance, and work environment and safety, and also discuss the methodological characteristics of the ET literature as well as typical ET measures used. We conclude by illustrating future avenues for ET research in manufacturing and logistics

    Towards System Agnostic Calibration of Optical See-Through Head-Mounted Displays for Augmented Reality

    Get PDF
    This dissertation examines the developments and progress of spatial calibration procedures for Optical See-Through (OST) Head-Mounted Display (HMD) devices for visual Augmented Reality (AR) applications. Rapid developments in commercial AR systems have created an explosion of OST device options for not only research and industrial purposes, but also the consumer market as well. This expansion in hardware availability is equally matched by a need for intuitive standardized calibration procedures that are not only easily completed by novice users, but which are also readily applicable across the largest range of hardware options. This demand for robust uniform calibration schemes is the driving motive behind the original contributions offered within this work. A review of prior surveys and canonical description for AR and OST display developments is provided before narrowing the contextual scope to the research questions evolving within the calibration domain. Both established and state of the art calibration techniques and their general implementations are explored, along with prior user study assessments and the prevailing evaluation metrics and practices employed within. The original contributions begin with a user study evaluation comparing and contrasting the accuracy and precision of an established manual calibration method against a state of the art semi-automatic technique. This is the first formal evaluation of any non-manual approach and provides insight into the current usability limitations of present techniques and the complexities of next generation methods yet to be solved. The second study investigates the viability of a user-centric approach to OST HMD calibration through novel adaptation of manual calibration to consumer level hardware. Additional contributions describe the development of a complete demonstration application incorporating user-centric methods, a novel strategy for visualizing both calibration results and registration error from the user’s perspective, as well as a robust intuitive presentation style for binocular manual calibration. The final study provides further investigation into the accuracy differences observed between user-centric and environment-centric methodologies. The dissertation concludes with a summarization of the contribution outcomes and their impact on existing AR systems and research endeavors, as well as a short look ahead into future extensions and paths that continued calibration research should explore

    Automating the eye examination using optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) devices are becoming ubiquitous in eye clinics worldwide to aid the diagnosis and monitoring of eye disease. Much of this uptake relates to the ability to non-invasively capture micron-resolution images, enabling objective and quantitative data to be obtained from ocular structures. Although safe and reasonably quick to perform, the costs involved with operating OCT devices are not trivial, and the requirement for OCT and other imaging in addition to other clinical measures is placing increasing demand on ophthalmology clinics, contributing to fragmented patient pathways and often extended waiting times. In this thesis, a novel “binocular optical coherence tomography” system that seeks to overcome some of the limitations of current commercial OCT systems, is clinically evaluated. This device incorporates many aspects of the eye examination into a single patient-operated instrument, and aims to improve the efficiency and quality of eye care while reducing the overall labour and equipment costs. A progressive framework of testing is followed that includes human factors and usability testing, followed by early stage diagnostic studies to assess the agreement, repeatability, and reproducibility of individual diagnostic features. Health economics analysis of the retinal therapy clinic is used to model cost effectiveness of current practice and with binocular OCT implementation. The binocular OCT and development of other low-cost OCT systems may improve accessibility, however there remains a relative shortage of experts to interpret the images. Artificial intelligence (AI) is likely to play a role in rapid and automated image classification. This thesis explores the application of AI within retinal therapy clinics to predict the onset of exudative age-related macular degeneration in fellow eyes of patients undergoing treatment in their first eye. Together with automated and simultaneous imaging of both eyes with binocular OCT and the potential for low-cost patient-facing systems, AI is likely to have a role in personalising management plans, especially in a future where preventive treatments are available

    Development and evaluation of a novel method for in-situ medical image display

    Get PDF
    Three-dimensional (3D) medical imaging, including computed tomography (CT) and magnetic resonance (MR), and other modalities, has become a standard of care for diagnosis of disease and guidance of interventional procedures. As the technology to acquire larger, more magnificent, and more informative medical images advances, so too must the technology to display, interact with, and interpret these data.This dissertation concerns the development and evaluation of a novel method for interaction with 3D medical images called "grab-a-slice," which is a movable, tracked stereo display. It is the latest in a series of displays developed in our laboratory that we describe as in-situ, meaning that the displayed image is embedded in a physical 3D coordinate system. As the display is moved through space, a continuously updated tomographic slice of a 3D medical image is shown on the screen, corresponding to the position and orientation of the display. The act of manipulating the display through a "virtual patient" preserves the perception of 3D anatomic relationships in a way that is not possible with conventional, fixed displays. The further addition of stereo display capabilities permits augmentation of the tomographic image data with out-of-plane structures using 3D graphical methods.In this dissertation we describe the research and clinical motivations for such a device. We describe the technical development of grab-a-slice as well as psychophysical experiments to evaluate the hypothesized perceptual and cognitive benefits. We speculate on the advantages and limitations of the grab-a-slice display and propose future directions for its use in psychophysical research, clinical settings, and image analysis

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe
    corecore