4 research outputs found

    Feasibility of Ambient RF Energy Harvesting for Self-Sustainable M2M Communications Using Transparent and Flexible Graphene Antennas

    Get PDF
    Lifetime is a critical parameter in ubiquitous, battery-operated sensors for machine-to-machine (M2M) communication systems, an emerging part of the future Internet of Things. In this practical article, the performance of radio frequency (RF) to DC energy converters using transparent and flexible rectennas based on graphene in an ambient RF energyharvesting scenario is evaluated. Full-wave EM simulations of a dipole antenna assuming the reported state-of-the-art sheet resistance for few-layer, transparent graphene yields an estimated ohmic efficiency of 5 %. In the power budget calculation, the low efficiency of transparent graphene antennas is an issue because of the relatively low amount of available ambient RF energy in the frequency bands of interest, which together sets an upper limit on the harvested energy available for the RF-powered device. Using a commercial diode rectifier and an off-the-shelf wireless system for sensor communication, the graphene-based solution provides only a limited battery lifetime extension. However, for ultra-low-power technologies currently at the research stage, more advantageous ambient energy levels, or other use cases with infrequent data transmission, graphene-based solutions may be more feasible

    Characterisation and Modelling of Graphene FETs for Terahertz Mixers and Detectors

    Get PDF
    Graphene is a two-dimensional sheet of carbon atoms with numerous envisaged applications owing to its exciting properties. In particular, ultrahigh-speed graphene field effect transistors (GFETs) are possible due to the unprecedented carrier velocities in ideal graphene. Thus, GFETs may potentially advance the current upper operation frequency limit of RF electronics. In this thesis, the practical viability of high-frequency GFETs based on large-area graphene from chemical vapour deposition (CVD) is investigated. Device-level GFET model parameters are extracted to identify performance bottlenecks. Passive mixer and power detector terahertz circuits operating above the present active GFET transit time limit are demonstrated. The first device-level microwave noise characterisation of a CVD GFET is presented. This allows for the de-embedding of the noise parameters and construction of noise models for the intrinsic device. The correlation of the gate and drain noise in the PRC model is comparable to that of Si MOSFETs. This indicates higher long-term GFET noise relative to HEMTs. An analytical power detector model derived using Volterra analysis on the FET large-signal model is verified at frequencies up to 67 GHz. The drain current derivatives, intrinsic capacitors and parasitic resistors of the closed-form expressions for the noise equivalent power (NEP) are extracted from DC and S-parameter measurements. The model shows that a short gate length and a bandgap in the channel are required for optimal FET sensitivity. A power detector integrated with a split bow-tie antenna on a Si substrate demonstrates an optical NEP of 500 pW/Hz^1/2 at 600 GHz. This represents a state-of-the-art result for quasi-optically coupled, rectifying direct detectors based on GFETs operating at room temperature. The subharmonic GFET mixer utilising the electron-hole symmetry in graphene is scaled to operate with a centre frequency of 200 GHz, the highest frequency reported so far for graphene integrated circuits. The down-converter circuit is implemented in a coplanar waveguide (CPW) on Si and exhibits a conversion loss (CL) of 29 ± 2 dB in the 185-210 GHz band. In conclusion, the CVD GFETs in this thesis are unlikely to reach the performance required for high-end RF applications. Instead, they currently appear more likely to compete in niche applications such as flexible electronics
    corecore