3 research outputs found

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Leak location based on PDS-VMD of leakage-induced vibration signal under low SNR in water-supply pipelines

    Get PDF
    Leak location in water-supply pipelines is of great significance in order to preserve water resources and reduce economic losses. Cross-correlation (CC) based leak location is a popular and effective method in water-supply pipelines (WSP). However, with a decrease of signal to noise ratio (SNR), the errors of time-delay estimation (TDE) based on CC will become larger making it almost impossible to determine a leakage position. Hence, this work proposes leak location based on a combination of phase difference spectrum and variational mode decomposition (PDS-VMD) of leakage-induced vibration signal under low SNR for WSP. Firstly, the leakage-induced vibration signal is decomposed into several intrinsic mode functions (IMFs) by VMD, where the characteristic frequency band is determined by PDS of cross spectrum of two leakage signals. Then, the energy ratio of leakage signal in characteristic frequency band serves as a guideline to select effective IMF components from the decomposed IMFs. Finally, the selective IMFs are reconstituted into a new signal which can be used to determine a leak position using CC based TDE. In order to verify the effectiveness of the proposed leak location algorithm, the method based on PDS-VMD is compared with that using CC, combination of CC coefficient and VMD (CCC-VMD) using both simulation and experiment. The simulation and experimental results demonstrate that the proposed PDS-VMD method is more suitable for leak location in WSP, which provides immunity to both broadband and narrow band noise under low SNR. © 2020 IEEE
    corecore