2 research outputs found

    Improved Training Speed, Accuracy, and Data Utilization Through Loss Function Optimization

    Full text link
    As the complexity of neural network models has grown, it has become increasingly important to optimize their design automatically through metalearning. Methods for discovering hyperparameters, topologies, and learning rate schedules have lead to significant increases in performance. This paper shows that loss functions can be optimized with metalearning as well, and result in similar improvements. The method, Genetic Loss-function Optimization (GLO), discovers loss functions de novo, and optimizes them for a target task. Leveraging techniques from genetic programming, GLO builds loss functions hierarchically from a set of operators and leaf nodes. These functions are repeatedly recombined and mutated to find an optimal structure, and then a covariance-matrix adaptation evolutionary strategy (CMA-ES) is used to find optimal coefficients. Networks trained with GLO loss functions are found to outperform the standard cross-entropy loss on standard image classification tasks. Training with these new loss functions requires fewer steps, results in lower test error, and allows for smaller datasets to be used. Loss-function optimization thus provides a new dimension of metalearning, and constitutes an important step towards AutoML

    Optimizing Loss Functions Through Multivariate Taylor Polynomial Parameterization

    Full text link
    Metalearning of deep neural network (DNN) architectures and hyperparameters has become an increasingly important area of research. Loss functions are a type of metaknowledge that is crucial to effective training of DNNs, however, their potential role in metalearning has not yet been fully explored. Whereas early work focused on genetic programming (GP) on tree representations, this paper proposes continuous CMA-ES optimization of multivariate Taylor polynomial parameterizations. This approach, TaylorGLO, makes it possible to represent and search useful loss functions more effectively. In MNIST, CIFAR-10, and SVHN benchmark tasks, TaylorGLO finds new loss functions that outperform functions previously discovered through GP, as well as the standard cross-entropy loss, in fewer generations. These functions serve to regularize the learning task by discouraging overfitting to the labels, which is particularly useful in tasks where limited training data is available. The results thus demonstrate that loss function optimization is a productive new avenue for metalearning
    corecore