119 research outputs found

    Defining Equitable Geographic Districts in Road Networks via Stable Matching

    Full text link
    We introduce a novel method for defining geographic districts in road networks using stable matching. In this approach, each geographic district is defined in terms of a center, which identifies a location of interest, such as a post office or polling place, and all other network vertices must be labeled with the center to which they are associated. We focus on defining geographic districts that are equitable, in that every district has the same number of vertices and the assignment is stable in terms of geographic distance. That is, there is no unassigned vertex-center pair such that both would prefer each other over their current assignments. We solve this problem using a version of the classic stable matching problem, called symmetric stable matching, in which the preferences of the elements in both sets obey a certain symmetry. In our case, we study a graph-based version of stable matching in which nodes are stably matched to a subset of nodes denoted as centers, prioritized by their shortest-path distances, so that each center is apportioned a certain number of nodes. We show that, for a planar graph or road network with nn nodes and kk centers, the problem can be solved in O(nnlogn)O(n\sqrt{n}\log n) time, which improves upon the O(nk)O(nk) runtime of using the classic Gale-Shapley stable matching algorithm when kk is large. Finally, we provide experimental results on road networks for these algorithms and a heuristic algorithm that performs better than the Gale-Shapley algorithm for any range of values of kk.Comment: 9 pages, 4 figures, to appear in 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017) November 7-10, 2017, Redondo Beach, California, US

    Analysis of Farthest Point Sampling for Approximating Geodesics in a Graph

    Get PDF
    A standard way to approximate the distance between any two vertices pp and qq on a mesh is to compute, in the associated graph, a shortest path from pp to qq that goes through one of kk sources, which are well-chosen vertices. Precomputing the distance between each of the kk sources to all vertices of the graph yields an efficient computation of approximate distances between any two vertices. One standard method for choosing kk sources, which has been used extensively and successfully for isometry-invariant surface processing, is the so-called Farthest Point Sampling (FPS), which starts with a random vertex as the first source, and iteratively selects the farthest vertex from the already selected sources. In this paper, we analyze the stretch factor FFPS\mathcal{F}_{FPS} of approximate geodesics computed using FPS, which is the maximum, over all pairs of distinct vertices, of their approximated distance over their geodesic distance in the graph. We show that FFPS\mathcal{F}_{FPS} can be bounded in terms of the minimal value F\mathcal{F}^* of the stretch factor obtained using an optimal placement of kk sources as FFPS2re2F+2re2+8re+1\mathcal{F}_{FPS}\leq 2 r_e^2 \mathcal{F}^*+ 2 r_e^2 + 8 r_e + 1, where rer_e is the ratio of the lengths of the longest and the shortest edges of the graph. This provides some evidence explaining why farthest point sampling has been used successfully for isometry-invariant shape processing. Furthermore, we show that it is NP-complete to find kk sources that minimize the stretch factor.Comment: 13 pages, 4 figure

    A simpler and more efficient algorithm for the next-to-shortest path problem

    Full text link
    Given an undirected graph G=(V,E)G=(V,E) with positive edge lengths and two vertices ss and tt, the next-to-shortest path problem is to find an stst-path which length is minimum amongst all stst-paths strictly longer than the shortest path length. In this paper we show that the problem can be solved in linear time if the distances from ss and tt to all other vertices are given. Particularly our new algorithm runs in O(VlogV+E)O(|V|\log |V|+|E|) time for general graphs, which improves the previous result of O(V2)O(|V|^2) time for sparse graphs, and takes only linear time for unweighted graphs, planar graphs, and graphs with positive integer edge lengths.Comment: Partial result appeared in COCOA201
    corecore