1 research outputs found

    ꡬ쑰 μΆ•μ†Œ 기법과 인곡신경 νšŒλ‘œλ§μ„ μ΄μš©ν•œ μœ ν•œμš”μ†Œ ꡬ쑰물의 λͺ¨λΈ κ°±μ‹  기법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 기계곡학과, 2020. 8. 쑰맹효.Model updating methods for structural systems have been introduced in various numerical processes. To improve the updating method, the process must require an accurate analysis and minimized experimental uncertainties. Finite element model was employed to describe structural system. Structural vibration behavior of a plate model is expressed as a combination of the initial state behavior of the structure and its associated perturbations. The dynamic behavior obtained from a limited number of accessible nodes and their associated degrees of freedom is employed to detect structural changes that are consistent with the perturbations. The equilibrium model is described in terms of the measured and unmeasured modal data. Unmeasured information is estimated using an iterated improved reduction scheme. Because the identification problem depends on the measured information, the quality of the measured data determines the accuracy of the identified model and the convergence of the identification problem. The accuracy of the identification depends on the measurement/sensor location. We propose a more accurate identification method using the optimal sensor location selection method. Experimental examples are adopted to examine the convergence and accuracy of the proposed method applied to an inverse problem of system identification. Model updating methods for structural systems have been introduced in various fields. Model updating processes are important for improving a models accuracy by considering experimental data. Structural system identification was achieved here by applying the degree of freedom-based reduction method and the inverse perturbation method. Experimental data were obtained using the specific sensor location selection method. Experimental vibration data were restored to a full finite element model using the reduction method to compare and update the numerical model. Applied iteratively, the improved reduced system method boosts model accuracy during full model restoration; however, iterative processes are time-consuming. The calculation efficiency was improved using the system equivalent reduction-expansion process in concert with the proper orthogonal decomposition. A convolutional neural network was trained and applied to the updating process. We propose the use of an efficient model updating method using a convolutional neural network to reduce calculation time. Experimental and numerical examples were adopted to examine the efficiency and accuracy of the model updating method using a convolutional neural network. A more complex model is applied for model updating method and validated with proposed methods. A bolt assembly modeling is introduced and simplified with verified methodologies.ꡬ쑰 μ‹œμŠ€ν…œμ— λŒ€ν•œ λͺ¨λΈ κ°±μ‹  방법이 λ‹€μ–‘ν•œ 해석에 λ„μž…λ˜κ³  μžˆμŠ΅λ‹ˆλ‹€. κ°±μ‹  방법을 κ°œμ„ ν•˜λ €λ©΄ ν”„λ‘œμ„ΈμŠ€μ— μ •ν™•ν•œ 뢄석과 μ΅œμ†Œν™”λœ μ‹€ν—˜μ  λΆˆν™•μ‹€μ„±μ΄ ν•„μš”ν•©λ‹ˆλ‹€. μœ ν•œ μš”μ†Œ λͺ¨λΈμ„ μ‚¬μš©ν•˜μ—¬ ꡬ쑰 μ‹œμŠ€ν…œμ„ κ΅¬ν˜„ν–ˆμŠ΅λ‹ˆλ‹€. ν‰νŒ λͺ¨λΈμ˜ ꡬ쑰적 진동 거동은 ꡬ쑰의 초기 μƒνƒœ 거동과 그와 κ΄€λ ¨λœ μ„­λ™μ˜ μ‘°ν•©μœΌλ‘œ ν‘œν˜„λ©λ‹ˆλ‹€. μ œν•œλœ 수의 κ°€λŠ₯ν•œ μœ„μΉ˜μ™€ 그에 ν•΄λ‹Ήν•˜λŠ” μžμœ λ„μ—μ„œ 얻은 동적 거동은 섭동과 μΌμΉ˜ν•˜λŠ” ꡬ쑰적 λ³€ν™”λ₯Ό κ°μ§€ν•˜λŠ” 데 μ‚¬μš©λ©λ‹ˆλ‹€. λ“±κ°€ λͺ¨λΈμ€ μΈ‘μ • 및 μΈ‘μ •λ˜μ§€ μ•Šμ€ λͺ¨λ“œ λ°μ΄ν„°μ˜ κ΄€μ μ—μ„œ μ„€λͺ…λ©λ‹ˆλ‹€. μΈ‘μ •λ˜μ§€ μ•Šμ€ μ •λ³΄λŠ” 반볡적 인 κ°œμ„ λœ μΆ•μ†Œ 기법을 μ‚¬μš©ν•˜μ—¬ μΆ”μ •λ©λ‹ˆλ‹€. μ‹œμŠ€ν…œ 식별 λ¬Έμ œλŠ” μΈ‘μ •λœ 정보에 μ˜μ‘΄ν•˜κΈ° λ•Œλ¬Έμ— μΈ‘μ •λœ λ°μ΄ν„°μ˜ μ •ν™•λ„λŠ” μ‹λ³„λœ λͺ¨λΈμ˜ μ •ν™•μ„±κ³Ό 식별 문제의 μˆ˜λ ΄μ„±μ„ κ²°μ •ν•©λ‹ˆλ‹€. μ‹œμŠ€ν…œ μ‹λ³„μ˜ 정확성은 μΈ‘μ • 및 μ„Όμ„œμ˜ μœ„μΉ˜μ— 따라 λ‹¬λΌμ§‘λ‹ˆλ‹€. 졜적의 μ„Όμ„œ μœ„μΉ˜λ₯Ό μ„ μ •ν•˜λŠ” 방법을 μ‚¬μš©ν•˜μ—¬, 보닀 μ •ν™•ν•œ 식별 방법을 μ œμ•ˆν•©λ‹ˆλ‹€. μ‹€ν—˜ μ˜ˆμ œλŠ” μ‹œμŠ€ν…œ μ‹λ³„μ˜ μ—­ 해석 λ¬Έμ œμ— 적용된 μ œμ•ˆλœ λ°©λ²•μ˜ μˆ˜λ ΄μ„±κ³Ό 정확성을 μ‘°μ‚¬ν•˜κΈ° μœ„ν•΄ μ„ μ •λ˜μ—ˆμŠ΅λ‹ˆλ‹€. μ‹€ν—˜ 데이터λ₯Ό κ³ λ €ν•˜μ—¬ λͺ¨λΈμ˜ 정확성을 높이렀면 λͺ¨λΈ κ°±μ‹  방법이 μ€‘μš”ν•©λ‹ˆλ‹€. μ—¬κΈ°μ„œ μžμœ λ„ 기반 μΆ•μ†Œ 기법과 μ—­ 섭동 방법을 μ μš©ν•˜μ—¬ ꡬ쑰 μ‹œμŠ€ν…œ 식별을 μˆ˜ν–‰ν–ˆμŠ΅λ‹ˆλ‹€. μ„Όμ„œ μœ„μΉ˜ μ„ μ • 방법을 μ‚¬μš©ν•˜μ—¬ μ–‘μ§ˆμ˜ μ‹€ν—˜ 데이터λ₯Ό 얻을 수 μžˆμ—ˆμŠ΅λ‹ˆλ‹€. μ‹€ν—˜ λͺ¨λΈκ³Ό 해석 λͺ¨λΈμ„ λΉ„κ΅ν•˜κ³  κ°±μ‹ ν•˜κΈ° μœ„ν•΄ μ‹€ν—˜ 데이터와 μΆ•μ†Œ κΈ°λ²•μ˜ λ³€ν™˜ν–‰λ ¬μ„ μ‚¬μš©ν•˜μ—¬ 전체 μœ ν•œ μš”μ†Œ λͺ¨λΈλ‘œ λ³΅μ›λ˜μ—ˆμŠ΅λ‹ˆλ‹€. 반볡적으둜 μ μš©λ˜λŠ” κ°œμ„ λœ μΆ•μ†Œ 기법은 전체 λͺ¨λΈ 볡원 κ³Όμ •μ—μ„œ λͺ¨λΈμ˜ 정확도λ₯Ό λ†’μ—¬μ€λ‹ˆλ‹€. κ·ΈλŸ¬λ‚˜ 반볡 κ³„μ‚°μœΌλ‘œ 인해 μ‹œκ°„μ΄ 많이 κ±Έλ¦½λ‹ˆλ‹€. 적합 직ꡐ 뢄해와 ν•¨κ»˜ 반볡 계산이 ν•„μš” μ—†λŠ” μžμœ λ„ μΆ•μ†Œ κΈ°λ²•μ˜ λ³€ν™˜ν–‰λ ¬μ„ μ‚¬μš©ν•˜μ—¬ 계산 νš¨μœ¨μ„ ν–₯μƒμ‹œμΌ°μŠ΅λ‹ˆλ‹€. ν•©μ„± κ³± 인곡 μ‹ κ²½ νšŒλ‘œλ§μ„ ν•™μŠ΅ν•˜μ—¬ λͺ¨λΈ κ°±μ‹  방법에 μ μš©λ˜μ—ˆμŠ΅λ‹ˆλ‹€. λ³Έ 연ꡬλ₯Ό 톡해 계산 μ‹œκ°„μ„ 쀄일 수 μžˆλŠ” ν•©μ„± κ³± 인곡 μ‹ κ²½ νšŒλ‘œλ§μ„ μ‚¬μš©ν•˜λŠ” 효율적인 λͺ¨λΈ κ°±μ‹  λ°©λ²•μ˜ μ‚¬μš©μ„ μ œμ•ˆν•©λ‹ˆλ‹€. ν•©μ„± κ³± 인곡 μ‹ κ²½ νšŒλ‘œλ§μ„ μ‚¬μš©ν•˜λŠ” λͺ¨λΈ κ°±μ‹  λ°©λ²•μ˜ νš¨μœ¨μ„±κ³Ό 정확성을 μ‘°μ‚¬ν•˜κΈ° μœ„ν•΄ μ‹€ν—˜ 및 수치 예제λ₯Ό μ„ μ •ν•˜κ³  κ²€μ¦ν–ˆμŠ΅λ‹ˆλ‹€. λ˜ν•œ μ œμ•ˆλœ λ°©λ²•μ˜ 검증을 μœ„ν•΄ 보닀 λ³΅μž‘ν•œ λͺ¨λΈμ΄ λͺ¨λΈ κ°±μ‹  방법에 μ μš©λ˜μ—ˆμŠ΅λ‹ˆλ‹€. κ²€μ¦λœ 방법을 볼트 κ²°ν•© λͺ¨λΈλ§μ— λ„μž…ν•˜κ³  μ‹€ν—˜μ„ ν†΅ν•œ λͺ¨λΈ κ°±μ‹ μœΌλ‘œ λ”μš± λ‹¨μˆœν™”λœ λͺ¨λΈλ§μ„ μ œμ•ˆν•©λ‹ˆλ‹€.Chapter 1. Introduction 1 1.1 Frequency model updating method . 1 1.2 Reduction methods . 3 1.2.1 Degree of freedom-based reduction method 3 1.2.2 Iterated improved reduced system 4 1.2.3 Proper orthogonal decomposition 8 1.2.4 System equivalent reduction-expansion process 9 1.3 Structural system identification . 11 1.3.1 Balance equation for system identification . 15 1.3.2 Inverse perturbation method . 16 1.4 Machine learning in identification process . 20 Chapter 2. Sensor location selection method 21 2.1 Vibration test setup . 21 2.1.1 Vibration test setup for system identification 21 2.1.2 Vibration data rebuilt for in-house code . 22 2.2 Nodal point consideration . 26 2.2.1 Sequential elimination method 26 2.2.2 Energy method 27 2.2.3 Nodal point consideration 28 2.2.4 Numerical examples . 28 2.3 Sensor location selection method 32 Chapter 3. Residual error equation for identificataion process 36 3.1 Parameter optimizing equation setup 36 3.2 Convergence criterion . 38 3.3 Weighting factor for parameter evaluation 39 3.4 Identification examples 42 Chapter 4. Convolutional neural networks-based system identification method 54 4.1 Introduction . 54 4.2 The balance equation of the model updating method . 57 4.2.1 The IPM method 58 4.2.2 The DOF-based reduction method 59 4.2.3 Experimental data for the model updating method 63 4.3 Convolutional neural network-based identification 67 4.3.1 The SEREP and POD . 67 4.3.2 The 2D-CNN 72 4.4 Experimental examples 77 Chapter 5. A model updating of complex models 94 5.1 The model updating and digital twin . 94 5.2 A complex model example 95 5.2.1 The tank bracket model 95 5.2.2 The sensor location selection 98 5.3 The bolt joint assembly simplification . 102 Chapter 6. Conclusion 109 Appendix A. Structural design of soft robotics using a joint structure of photo responsive polymers 113 A.1 Overview 113 A.2 Structural desing of soft robotics . 114 A.3 Experimental setup 117 A.3.1 Systhesis process 117 A.3.2 Sample preparation 118 A.3.3 Spectrometer characterization 118 A.4 Structural modeling . 121 A.4.1 Multiscale mechanincs 121 A.4.2 Nonlinear FEM with a co-rotational formulation 123 A.5 Results and discussion 128 A.6 Summary of Appendix A 142 Bibliography 145 Abstract in Korean 158Docto
    corecore