1,813 research outputs found
An integrated study of earth resources in the State of California using remote sensing techniques
The author has identified the following significant results. The supply, demand, and impact relationships of California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan are discussed
Introduction: Localized Structures in Dissipative Media: From Optics to Plant Ecology
Localised structures in dissipative appears in various fields of natural
science such as biology, chemistry, plant ecology, optics and laser physics.
The proposed theme issue is to gather specialists from various fields of
non-linear science toward a cross-fertilisation among active areas of research.
This is a cross-disciplinary area of research dominated by the nonlinear optics
due to potential applications for all-optical control of light, optical
storage, and information processing. This theme issue contains contributions
from 18 active groups involved in localized structures field and have all made
significant contributions in recent years.Comment: 14 pages, 0 figure, submitted to Phi. Trasaction Royal Societ
Understanding and Predicting Vadose Zone Processes
Vadose zone hydrologic and biogeochemical processes play a significant role in the capture, storage and distribution of contaminants between the land surface and groundwater. One major issue facing geoscientists in dealing with investigations of the unsaturated zone flow and transport processes is the evaluation of heterogeneity of subsurface media. This chapter presents a summary of approaches for monitoring and modeling of vadose zone dynamics in the presence of heterogeneities and complex features, as well as incorporating transient conditions. Modeling results can then be used to provide early warning of soil and groundwater contamination before problems arise, provide scientific and regulatory credibility to environmental management decision-making process to enhance protection of human health and the environment. We recommend that future studies target the use of RTMs to identify and quantify critical interfaces that control large-scale biogeochemical reaction rates and ecosystem functioning. Improvements also need to be made in devising scaling approaches to reduce the disconnect between measured data and the scale at which processes occur
The application of remote sensing techniques: Technical and methodological issues
Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included
Literature review of the remote sensing of natural resources
Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided
Research for applications of remote sensing to state and local governments (ARSIG)
Remote sensing and its application to problems confronted by local and state planners are reported. The added dimension of remote sensing as a data gathering tool has been explored identifying pertinent land use factors associated with urban growth such as soil associations, soil capability, vegetation distribution, and flood prone areas. Remote sensing within rural agricultural setting has also been utilized to determine irrigation runoff volumes, cropping patterns, and land use. A variety of data sources including U-2 70 mm multispectral black and white photography, RB-57 9-inch color IR, HyAC panoramic color IR and ERTS-1 imagery have been used over selected areas of Arizona including Tucson, Arizona (NASA Test Site #30) and the Sulphur Springs Valley
Quarterly literature review of the remote sensing of natural resources
The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports
Characterization of polarization effects on deployed aerial optical fibre in South Africa
In this study, two polarization effects, namely the state of polarization (SOP) and polarization mode dispersion (PMD) in optical fibre cable are investigated. The change in polarization effects introduces errors in optical fibre communication system. We find that the SOP drifts slowly in buried cables, and rapidly in aerial cables. This is because buried cables are located in a static environment, whereas aerial cables are exposed directly to a dynamic environment. The SOP change in aerial cable shows significant correlation with its environment (the global radiation, temperature and wind). The autocorrelation function (ACF) was not performed in buried cable, since they do not satisfy the ACF assumption, whereas in aerial cable it is found that the ACF of the SOP decorrelates quite quickly during the day. The 50 percent decorrelation time during the day and night are 9.6 and 30.4 minutes, respectively. During the day the properties of the optical fibre change rapidly as a result of the rapidly changing environmental conditions, whereas at night the environmental conditions change relatively slowly. Fast Fourier Transform (FFT) of the SOP fluctuations show discrete peaks, which corresponds to the wind induced vibrational frequency of the cable. The PMD fluctuations for undeployed and deployed aerial optical fibre cable are monitored using the generalized interferometric technique (GINTY). It is found that the PMD measured with polarization scrambling is more scattered but more reliable than the PMD measured without polarization scrambling. This is because the PMD obtained with polarization scrambling is averaged over different input and output (I/O) SOP pairs. For deployed aerial cable, it is found that the PMD measured without polarization scrambling fluctuates rapidly during high wind speed conditions. Furthermore, there is a correlation between the measured PMD and the change in temperature. It is found that the change in temperature has a stronger influence than the wind on the PMD of the optical fibre link
- …
