35 research outputs found

    On the Probability of Generating a Lattice

    Full text link
    We study the problem of determining the probability that m vectors selected uniformly at random from the intersection of the full-rank lattice L in R^n and the window [0,B)^n generate Λ\Lambda when B is chosen to be appropriately large. This problem plays an important role in the analysis of the success probability of quantum algorithms for solving the Discrete Logarithm Problem in infrastructures obtained from number fields and also for computing fundamental units of number fields. We provide the first complete and rigorous proof that 2n+1 vectors suffice to generate L with constant probability (provided that B is chosen to be sufficiently large in terms of n and the covering radius of L and the last n+1 vectors are sampled from a slightly larger window). Based on extensive computer simulations, we conjecture that only n+1 vectors sampled from one window suffice to generate L with constant success probability. If this conjecture is true, then a significantly better success probability of the above quantum algorithms can be guaranteed.Comment: 18 page

    Efficient Quantum Algorithm for Identifying Hidden Polynomials

    Full text link
    We consider a natural generalization of an abelian Hidden Subgroup Problem where the subgroups and their cosets correspond to graphs of linear functions over a finite field F with d elements. The hidden functions of the generalized problem are not restricted to be linear but can also be m-variate polynomial functions of total degree n>=2. The problem of identifying hidden m-variate polynomials of degree less or equal to n for fixed n and m is hard on a classical computer since Omega(sqrt{d}) black-box queries are required to guarantee a constant success probability. In contrast, we present a quantum algorithm that correctly identifies such hidden polynomials for all but a finite number of values of d with constant probability and that has a running time that is only polylogarithmic in d.Comment: 17 page

    Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem

    Get PDF
    Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.Comment: 21 page
    corecore