1,070 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Versatile Extensible Security System for Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad hoc Network (MANET) is becoming more and more popular in scientific, government, and general applications, but security system for MANET is still at infant stage. Currently, there are not many security systems that provide extensive security coverage for MANET. Moreover, most of these security systems assume nodes have infinite computation power and energy; an assumption that is not true for many mobiles. Versatile and Extensible System (VESS) is a powerful and versatile general-purpose security suite that comprises of modified versions of existing encryption and authentication schemes. VESS uses a simple and network-efficient but still reliable authentication scheme. The security suite offers four levels of security adjustments base on different encryption strength. Each level is designed to suit different network needs (performance and/or security), and the security suite allows individual end-to-end pair-wise security level adjustments; a big advantage for highly heterogeneous network. This versatility and adjustability let each pair of talking nodes in the network can choose a security level that prioritize either performance or security, or nodes can also choose a level that carefully balance between security strength and network performance. Finally, the security suite, with its existing authentication and encryption systems, is a framework that allows easy future extension and modification

    A Novel Design and Implementation of Dos-Resistant Authentication and Seamless Handoff Scheme for Enterprise WLANs

    Get PDF
    With the advance of wireless access technologies, the IEEE 802.11 wireless local area network (WLAN) has gained significant increase in popularity and deployment due to the substantially improved transmission rate and decreased deployment costs. However, this same widespread deployment makes WLANs an attractive target for network attacks. Several vulnerabilities have been identified and reported regarding the security of the current 802.11 standards. To address those security weaknesses, IEEE standard committees proposed the 802.11i amendment to enhance WLAN security. The 802.11i standard has demonstrated the capability of providing satisfactory mutual authentication, better data confidentiality, and key management support, however, the design of 802.11i does not consider network availability. Thus 802.11i is highly susceptible to malicious denial-of-service (DoS) attacks, which exploit the vulnerability of unprotected management frames. This paper proposes, tests and evaluates a combination of three novel methods by which the exploitation of 802.11i by DoS attacks can be improved. These three methods include an access point nonce dialogue scheme, a fast access point transition protocol handoff scheme and a location management based selective scanning scheme. This combination is of particular value to real-time users running time-dependant applications such as VoIP. In order to acquire practical data to evaluate the proposed schemes, a prototype network has been implemented as an experimental testbed using open source tools and drivers. This testbed allows practical data to be collected and analysed. The result demonstrates that not only the proposed authentication scheme eradicates most of the DoS vulnerabilities, but also substantially improved the handoff performance to a level suitable for supporting real-time services

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.Comment: 32 pages, 10 figures. The work is an extended version of the author's previous works submitted in CoRR: arXiv:1107.5538v1 and arXiv:1102.1226v

    An Adaptive Multimedia-Oriented Handoff Scheme for IEEE 802.11 WLANs

    Full text link
    Previous studies have shown that the actual handoff schemes employed in the IEEE 802.11 Wireless LANs (WLANs) do not meet the strict delay constraints placed by many multimedia applications like Voice over IP. Both the active and the passive supported scan modes in the standard handoff procedure have important delay that affects the Quality of Service (QoS) required by the real-time communications over 802.11 networks. In addition, the problem is further compounded by the fact that limited coverage areas of Access Points (APs) occupied in 802.11 infrastructure WLANs create frequent handoffs. We propose a new optimized and fast handoff scheme that decrease both handoff latency and occurrence by performing a seamless prevent scan process and an effective next-AP selection. Through simulations and performance evaluation, we show the effectiveness of the new adaptive handoff that reduces the process latency and adds new context-based parameters. The Results illustrate a QoS delay-respect required by applications and an optimized AP-choice that eliminates handoff events that are not beneficial.Comment: 20 pages, 14 figures, 4 table
    • …
    corecore