35,712 research outputs found

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Outlier Detection Using Nonconvex Penalized Regression

    Full text link
    This paper studies the outlier detection problem from the point of view of penalized regressions. Our regression model adds one mean shift parameter for each of the nn data points. We then apply a regularization favoring a sparse vector of mean shift parameters. The usual L1L_1 penalty yields a convex criterion, but we find that it fails to deliver a robust estimator. The L1L_1 penalty corresponds to soft thresholding. We introduce a thresholding (denoted by Θ\Theta) based iterative procedure for outlier detection (Θ\Theta-IPOD). A version based on hard thresholding correctly identifies outliers on some hard test problems. We find that Θ\Theta-IPOD is much faster than iteratively reweighted least squares for large data because each iteration costs at most O(np)O(np) (and sometimes much less) avoiding an O(np2)O(np^2) least squares estimate. We describe the connection between Θ\Theta-IPOD and MM-estimators. Our proposed method has one tuning parameter with which to both identify outliers and estimate regression coefficients. A data-dependent choice can be made based on BIC. The tuned Θ\Theta-IPOD shows outstanding performance in identifying outliers in various situations in comparison to other existing approaches. This methodology extends to high-dimensional modeling with pnp\gg n, if both the coefficient vector and the outlier pattern are sparse

    Robust Orthogonal Complement Principal Component Analysis

    Full text link
    Recently, the robustification of principal component analysis has attracted lots of attention from statisticians, engineers and computer scientists. In this work we study the type of outliers that are not necessarily apparent in the original observation space but can seriously affect the principal subspace estimation. Based on a mathematical formulation of such transformed outliers, a novel robust orthogonal complement principal component analysis (ROC-PCA) is proposed. The framework combines the popular sparsity-enforcing and low rank regularization techniques to deal with row-wise outliers as well as element-wise outliers. A non-asymptotic oracle inequality guarantees the accuracy and high breakdown performance of ROC-PCA in finite samples. To tackle the computational challenges, an efficient algorithm is developed on the basis of Stiefel manifold optimization and iterative thresholding. Furthermore, a batch variant is proposed to significantly reduce the cost in ultra high dimensions. The paper also points out a pitfall of a common practice of SVD reduction in robust PCA. Experiments show the effectiveness and efficiency of ROC-PCA in both synthetic and real data
    corecore