3 research outputs found

    Fast nonlinear model order reduction via associated transforms of high-order volterra transfer functions

    Get PDF
    We present a new and fast way of computing the projection matrices serving high-order Volterra transfer functions in the context of (weakly and strongly) nonlinear model order reduction. The novelty is to perform, for the first time, the association of multivariate (Laplace) variables in high-order multiple-input multiple-output (MIMO) transfer functions to generate the standard single-s transfer functions. The consequence is obvious: instead of finding projection subspaces about every s i, only that about a single s is required. This translates into drastic saving in computation and memory, and much more compact reduced-order nonlinear models, without compromising any accuracy. © 2012 ACM.published_or_final_versio

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System
    corecore