99 research outputs found

    End-to-end Sampling Patterns

    Full text link
    Sample patterns have many uses in Computer Graphics, ranging from procedural object placement over Monte Carlo image synthesis to non-photorealistic depiction. Their properties such as discrepancy, spectra, anisotropy, or progressiveness have been analyzed extensively. However, designing methods to produce sampling patterns with certain properties can require substantial hand-crafting effort, both in coding, mathematical derivation and compute time. In particular, there is no systematic way to derive the best sampling algorithm for a specific end-task. Tackling this issue, we suggest another level of abstraction: a toolkit to end-to-end optimize over all sampling methods to find the one producing user-prescribed properties such as discrepancy or a spectrum that best fit the end-task. A user simply implements the forward losses and the sampling method is found automatically -- without coding or mathematical derivation -- by making use of back-propagation abilities of modern deep learning frameworks. While this optimization takes long, at deployment time the sampling method is quick to execute as iterated unstructured non-linear filtering using radial basis functions (RBFs) to represent high-dimensional kernels. Several important previous methods are special cases of this approach, which we compare to previous work and demonstrate its usefulness in several typical Computer Graphics applications. Finally, we propose sampling patterns with properties not shown before, such as high-dimensional blue noise with projective properties

    Randomized Self Organizing Map

    Get PDF
    32 pages, 19 figuresInternational audienceWe propose a variation of the self organizing map algorithm by considering the random placement of neurons on a two-dimensional manifold, following a blue noise distribution from which various topologies can be derived. These topologies possess random (but controllable) discontinuities that allow for a more flexible self-organization, especially with highdimensional data. The proposed algorithm is tested on one-, two-and three-dimensions tasks as well as on the MNIST handwritten digits dataset and validated using spectral analysis and topological data analysis tools. We also demonstrate the ability of the randomized self-organizing map to gracefully reorganize itself in case of neural lesion and/or neurogenesis

    Topics in access, storage, and sensor networks

    Get PDF
    In the first part of this dissertation, Data Over Cable Service Interface Specification (DOCSIS) and IEEE 802.3ah Ethernet Passive Optical Network (ETON), two access networking standards, are studied. We study the impact of two parameters of the DOCSIS protocol and derive the probability of message collision in the 802.3ah device discovery scheme. We survey existing bandwidth allocation schemes for EPONs, derive the average grant size in one such scheme, and study the performance of the shortest-job-first heuristic. In the second part of this dissertation, we study networks of mobile sensors. We make progress towards an architecture for disconnected collections of mobile sensors. We propose a new design abstraction called tours which facilitates the combination of mobility and communication into a single design primitive and enables the system of sensors to reorganize into desirable topologies alter failures. We also initiate a study of computation in mobile sensor networks. We study the relationship between two distributed computational models of mobile sensor networks: population protocols and self-similar functions. We define the notion of a self-similar predicate and show when it is computable by a population protocol. Transition graphs of population protocols lead its to the consideration of graph powers. We consider the direct product of graphs and its new variant which we call the lexicographic direct product (or the clique product). We show that invariants concerning transposable walks in direct graph powers and transposable independent sets in graph families generated by the lexicographic direct product are uncomputable. The last part of this dissertation makes contributions to the area of storage systems. We propose a sequential access detect ion and prefetching scheme and a dynamic cache sizing scheme for large storage systems. We evaluate the cache sizing scheme theoretically and through simulations. We compute the expected hit ratio of our and competing schemes and bound the expected size of our dynamic cache sufficient to obtain an optimal hit ratio. We also develop a stand-alone simulator for studying our proposed scheme and integrate it with an empirically validated disk simulator

    Quantum Loewner Evolution

    Full text link
    What is the scaling limit of diffusion limited aggregation (DLA) in the plane? This is an old and famously difficult question. One can generalize the question in two ways: first, one may consider the {\em dielectric breakdown model} η\eta-DBM, a generalization of DLA in which particle locations are sampled from the η\eta-th power of harmonic measure, instead of harmonic measure itself. Second, instead of restricting attention to deterministic lattices, one may consider η\eta-DBM on random graphs known or believed to converge in law to a Liouville quantum gravity (LQG) surface with parameter γ[0,2]\gamma \in [0,2]. In this generality, we propose a scaling limit candidate called quantum Loewner evolution, QLE(γ2,η)(\gamma^2, \eta). QLE is defined in terms of the radial Loewner equation like radial SLE, except that it is driven by a measure valued diffusion νt\nu_t derived from LQG rather than a multiple of a standard Brownian motion. We formalize the dynamics of νt\nu_t using an SPDE. For each γ(0,2]\gamma \in (0,2], there are two or three special values of η\eta for which we establish the existence of a solution to these dynamics and explicitly describe the stationary law of νt\nu_t. We also explain discrete versions of our construction that relate DLA to loop-erased random walk and the Eden model to percolation. A certain "reshuffling" trick (in which concentric annular regions are rotated randomly, like slot machine reels) facilitates explicit calculation. We propose QLE(2,1)(2,1) as a scaling limit for DLA on a random spanning-tree-decorated planar map, and QLE(8/3,0)(8/3,0) as a scaling limit for the Eden model on a random triangulation. We propose using QLE(8/3,0)(8/3,0) to endow pure LQG with a distance function, by interpreting the region explored by a branching variant of QLE(8/3,0)(8/3,0), up to a fixed time, as a metric ball in a random metric space.Comment: 132 pages, approximately 100 figures and computer simulation

    Editable View Optimized Tone Mapping For Viewing High Dynamic Range Panoramas On Head Mounted Display

    Get PDF
    Head mounted displays are characterized by relatively low resolution and low dynamic range. These limitations significantly reduce the visual quality of photo-realistic captures on such displays. This thesis presents an interactive view optimized tone mapping technique for viewing large sized high dynamic range panoramas up to 16384 by 8192 on head mounted displays. This technique generates a separate file storing pre-computed view-adjusted mapping function parameters. We define this technique as ToneTexture. The use of a view adjusted tone mapping allows for expansion of the perceived color space available to the end user. This yields an improved visual appearance of both high dynamic range panoramas and low dynamic range panoramas on such displays. Moreover, by providing proper interface to manipulate on ToneTexture, users are allowed to adjust the mapping function as to changing color emphasis. The authors present comparisons of the results produced by ToneTexture technique against widely-used Reinhard tone mapping operator and Filmic tone mapping operator both objectively via a mathematical quality assessment metrics and subjectively through user study. Demonstration systems are available for desktop and head mounted displays such as Oculus Rift and GearVR

    A Programmable Model for Designing Stationary 2D Arrangements

    No full text
    This paper introduces a programmable method for designing stationary 2D arrangements for element textures, namely textures made of small geometric elements. These textures are ubiquitous in numerous applications of computer-aided illustration. Previous methods, whether they be example-based or layout-based, lack control and can produce a limited range of possible arrangements. Our approach targets technical artists who will design an arrangement by writing a script.These scripts are using three types of operators: partitioning operators for defining the broad-scale organization of the arrangement, mapping operators for controlling the local organization of elements, and merging operators for mixing different arrangements. These operators are designed so as to guarantee a stationary result meaning that the produced arrangements will always be repetitive. We show that this simple set of operators is sufficient to reach a much broader variety of arrangements than previous methods. Editing the script leads to predictable changes in the synthesized arrangement, which allows an easy iterative design of complex structures. Finally, our operator set is extensible and can be adapted to application-dependent needs

    Hierarchical Variance Reduction Techniques for Monte Carlo Rendering

    Get PDF
    Ever since the first three-dimensional computer graphics appeared half a century ago, the goal has been to model and simulate how light interacts with materials and objects to form an image. The ultimate goal is photorealistic rendering, where the created images reach a level of accuracy that makes them indistinguishable from photographs of the real world. There are many applications ñ visualization of products and architectural designs yet to be built, special effects, computer-generated films, virtual reality, and video games, to name a few. However, the problem has proven tremendously complex; the illumination at any point is described by a recursive integral to which a closed-form solution seldom exists. Instead, computer simulation and Monte Carlo methods are commonly used to statistically estimate the result. This introduces undesirable noise, or variance, and a large body of research has been devoted to finding ways to reduce the variance. I continue along this line of research, and present several novel techniques for variance reduction in Monte Carlo rendering, as well as a few related tools. The research in this dissertation focuses on using importance sampling to pick a small set of well-distributed point samples. As the primary contribution, I have developed the first methods to explicitly draw samples from the product of distant high-frequency lighting and complex reflectance functions. By sampling the product, low noise results can be achieved using a very small number of samples, which is important to minimize the rendering times. Several different hierarchical representations are explored to allow efficient product sampling. In the first publication, the key idea is to work in a compressed wavelet basis, which allows fast evaluation of the product. Many of the initial restrictions of this technique were removed in follow-up work, allowing higher-resolution uncompressed lighting and avoiding precomputation of reflectance functions. My second main contribution is to present one of the first techniques to take the triple product of lighting, visibility and reflectance into account to further reduce the variance in Monte Carlo rendering. For this purpose, control variates are combined with importance sampling to solve the problem in a novel way. A large part of the technique also focuses on analysis and approximation of the visibility function. To further refine the above techniques, several useful tools are introduced. These include a fast, low-distortion map to represent (hemi)spherical functions, a method to create high-quality quasi-random points, and an optimizing compiler for analyzing shaders using interval arithmetic. The latter automatically extracts bounds for importance sampling of arbitrary shaders, as opposed to using a priori known reflectance functions. In summary, the work presented here takes the field of computer graphics one step further towards making photorealistic rendering practical for a wide range of uses. By introducing several novel Monte Carlo methods, more sophisticated lighting and materials can be used without increasing the computation times. The research is aimed at domain-specific solutions to the rendering problem, but I believe that much of the new theory is applicable in other parts of computer graphics, as well as in other fields
    corecore