4,800 research outputs found

    A Deep Pyramid Deformable Part Model for Face Detection

    Full text link
    We present a face detection algorithm based on Deformable Part Models and deep pyramidal features. The proposed method called DP2MFD is able to detect faces of various sizes and poses in unconstrained conditions. It reduces the gap in training and testing of DPM on deep features by adding a normalization layer to the deep convolutional neural network (CNN). Extensive experiments on four publicly available unconstrained face detection datasets show that our method is able to capture the meaningful structure of faces and performs significantly better than many competitive face detection algorithms

    Grid Loss: Detecting Occluded Faces

    Full text link
    Detection of partially occluded objects is a challenging computer vision problem. Standard Convolutional Neural Network (CNN) detectors fail if parts of the detection window are occluded, since not every sub-part of the window is discriminative on its own. To address this issue, we propose a novel loss layer for CNNs, named grid loss, which minimizes the error rate on sub-blocks of a convolution layer independently rather than over the whole feature map. This results in parts being more discriminative on their own, enabling the detector to recover if the detection window is partially occluded. By mapping our loss layer back to a regular fully connected layer, no additional computational cost is incurred at runtime compared to standard CNNs. We demonstrate our method for face detection on several public face detection benchmarks and show that our method outperforms regular CNNs, is suitable for realtime applications and achieves state-of-the-art performance.Comment: accepted to ECCV 201

    Selective Refinement Network for High Performance Face Detection

    Full text link
    High performance face detection remains a very challenging problem, especially when there exists many tiny faces. This paper presents a novel single-shot face detector, named Selective Refinement Network (SRN), which introduces novel two-step classification and regression operations selectively into an anchor-based face detector to reduce false positives and improve location accuracy simultaneously. In particular, the SRN consists of two modules: the Selective Two-step Classification (STC) module and the Selective Two-step Regression (STR) module. The STC aims to filter out most simple negative anchors from low level detection layers to reduce the search space for the subsequent classifier, while the STR is designed to coarsely adjust the locations and sizes of anchors from high level detection layers to provide better initialization for the subsequent regressor. Moreover, we design a Receptive Field Enhancement (RFE) block to provide more diverse receptive field, which helps to better capture faces in some extreme poses. As a consequence, the proposed SRN detector achieves state-of-the-art performance on all the widely used face detection benchmarks, including AFW, PASCAL face, FDDB, and WIDER FACE datasets. Codes will be released to facilitate further studies on the face detection problem.Comment: The first two authors have equal contributions. Corresponding author: Shifeng Zhang ([email protected]
    • …
    corecore