88 research outputs found

    Random Feature Maps via a Layered Random Projection (LaRP) Framework for Object Classification

    Full text link
    The approximation of nonlinear kernels via linear feature maps has recently gained interest due to their applications in reducing the training and testing time of kernel-based learning algorithms. Current random projection methods avoid the curse of dimensionality by embedding the nonlinear feature space into a low dimensional Euclidean space to create nonlinear kernels. We introduce a Layered Random Projection (LaRP) framework, where we model the linear kernels and nonlinearity separately for increased training efficiency. The proposed LaRP framework was assessed using the MNIST hand-written digits database and the COIL-100 object database, and showed notable improvement in object classification performance relative to other state-of-the-art random projection methods.Comment: 5 page

    Compact Random Feature Maps

    Full text link
    Kernel approximation using randomized feature maps has recently gained a lot of interest. In this work, we identify that previous approaches for polynomial kernel approximation create maps that are rank deficient, and therefore do not utilize the capacity of the projected feature space effectively. To address this challenge, we propose compact random feature maps (CRAFTMaps) to approximate polynomial kernels more concisely and accurately. We prove the error bounds of CRAFTMaps demonstrating their superior kernel reconstruction performance compared to the previous approximation schemes. We show how structured random matrices can be used to efficiently generate CRAFTMaps, and present a single-pass algorithm using CRAFTMaps to learn non-linear multi-class classifiers. We present experiments on multiple standard data-sets with performance competitive with state-of-the-art results.Comment: 9 page

    Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix

    Get PDF
    This paper studies how to sketch element-wise functions of low-rank matrices. Formally, given low-rank matrix A = [Aij] and scalar non-linear function f, we aim for finding an approximated low-rank representation of the (possibly high-rank) matrix [f(Aij)]. To this end, we propose an efficient sketching-based algorithm whose complexity is significantly lower than the number of entries of A, i.e., it runs without accessing all entries of [f(Aij)] explicitly. The main idea underlying our method is to combine a polynomial approximation of f with the existing tensor sketch scheme for approximating monomials of entries of A. To balance the errors of the two approximation components in an optimal manner, we propose a novel regression formula to find polynomial coefficients given A and f. In particular, we utilize a coreset-based regression with a rigorous approximation guarantee. Finally, we demonstrate the applicability and superiority of the proposed scheme under various machine learning tasks
    • …
    corecore