5,191 research outputs found

    Sketch-based Influence Maximization and Computation: Scaling up with Guarantees

    Full text link
    Propagation of contagion through networks is a fundamental process. It is used to model the spread of information, influence, or a viral infection. Diffusion patterns can be specified by a probabilistic model, such as Independent Cascade (IC), or captured by a set of representative traces. Basic computational problems in the study of diffusion are influence queries (determining the potency of a specified seed set of nodes) and Influence Maximization (identifying the most influential seed set of a given size). Answering each influence query involves many edge traversals, and does not scale when there are many queries on very large graphs. The gold standard for Influence Maximization is the greedy algorithm, which iteratively adds to the seed set a node maximizing the marginal gain in influence. Greedy has a guaranteed approximation ratio of at least (1-1/e) and actually produces a sequence of nodes, with each prefix having approximation guarantee with respect to the same-size optimum. Since Greedy does not scale well beyond a few million edges, for larger inputs one must currently use either heuristics or alternative algorithms designed for a pre-specified small seed set size. We develop a novel sketch-based design for influence computation. Our greedy Sketch-based Influence Maximization (SKIM) algorithm scales to graphs with billions of edges, with one to two orders of magnitude speedup over the best greedy methods. It still has a guaranteed approximation ratio, and in practice its quality nearly matches that of exact greedy. We also present influence oracles, which use linear-time preprocessing to generate a small sketch for each node, allowing the influence of any seed set to be quickly answered from the sketches of its nodes.Comment: 10 pages, 5 figures. Appeared at the 23rd Conference on Information and Knowledge Management (CIKM 2014) in Shanghai, Chin

    Seeding with Costly Network Information

    Full text link
    We study the task of selecting kk nodes in a social network of size nn, to seed a diffusion with maximum expected spread size, under the independent cascade model with cascade probability pp. Most of the previous work on this problem (known as influence maximization) focuses on efficient algorithms to approximate the optimal seed set with provable guarantees, given the knowledge of the entire network. However, in practice, obtaining full knowledge of the network is very costly. To address this gap, we first study the achievable guarantees using o(n)o(n) influence samples. We provide an approximation algorithm with a tight (1-1/e){\mbox{OPT}}-\epsilon n guarantee, using Oϵ(k2logn)O_{\epsilon}(k^2\log n) influence samples and show that this dependence on kk is asymptotically optimal. We then propose a probing algorithm that queries Oϵ(pn2log4n+kpn1.5log5.5n+knlog3.5n){O}_{\epsilon}(p n^2\log^4 n + \sqrt{k p} n^{1.5}\log^{5.5} n + k n\log^{3.5}{n}) edges from the graph and use them to find a seed set with the same almost tight approximation guarantee. We also provide a matching (up to logarithmic factors) lower-bound on the required number of edges. To address the dependence of our probing algorithm on the independent cascade probability pp, we show that it is impossible to maintain the same approximation guarantees by controlling the discrepancy between the probing and seeding cascade probabilities. Instead, we propose to down-sample the probed edges to match the seeding cascade probability, provided that it does not exceed that of probing. Finally, we test our algorithms on real world data to quantify the trade-off between the cost of obtaining more refined network information and the benefit of the added information for guiding improved seeding strategies

    Importance Sketching of Influence Dynamics in Billion-scale Networks

    Full text link
    The blooming availability of traces for social, biological, and communication networks opens up unprecedented opportunities in analyzing diffusion processes in networks. However, the sheer sizes of the nowadays networks raise serious challenges in computational efficiency and scalability. In this paper, we propose a new hyper-graph sketching framework for inflence dynamics in networks. The central of our sketching framework, called SKIS, is an efficient importance sampling algorithm that returns only non-singular reverse cascades in the network. Comparing to previously developed sketches like RIS and SKIM, our sketch significantly enhances estimation quality while substantially reducing processing time and memory-footprint. Further, we present general strategies of using SKIS to enhance existing algorithms for influence estimation and influence maximization which are motivated by practical applications like viral marketing. Using SKIS, we design high-quality influence oracle for seed sets with average estimation error up to 10x times smaller than those using RIS and 6x times smaller than SKIM. In addition, our influence maximization using SKIS substantially improves the quality of solutions for greedy algorithms. It achieves up to 10x times speed-up and 4x memory reduction for the fastest RIS-based DSSA algorithm, while maintaining the same theoretical guarantees.Comment: 12 pages, to appear in ICDM 2017 as a regular pape

    The Solution Distribution of Influence Maximization: A High-level Experimental Study on Three Algorithmic Approaches

    Full text link
    Influence maximization is among the most fundamental algorithmic problems in social influence analysis. Over the last decade, a great effort has been devoted to developing efficient algorithms for influence maximization, so that identifying the ``best'' algorithm has become a demanding task. In SIGMOD'17, Arora, Galhotra, and Ranu reported benchmark results on eleven existing algorithms and demonstrated that there is no single state-of-the-art offering the best trade-off between computational efficiency and solution quality. In this paper, we report a high-level experimental study on three well-established algorithmic approaches for influence maximization, referred to as Oneshot, Snapshot, and Reverse Influence Sampling (RIS). Different from Arora et al., our experimental methodology is so designed that we examine the distribution of random solutions, characterize the relation between the sample number and the actual solution quality, and avoid implementation dependencies. Our main findings are as follows: 1. For a sufficiently large sample number, we obtain a unique solution regardless of algorithms. 2. The average solution quality of Oneshot, Snapshot, and RIS improves at the same rate up to scaling of sample number. 3. Oneshot requires more samples than Snapshot, and Snapshot requires fewer but larger samples than RIS. We discuss the time efficiency when conditioning Oneshot, Snapshot, and RIS to be of identical accuracy. Our conclusion is that Oneshot is suitable only if the size of available memory is limited, and RIS is more efficient than Snapshot for large networks; Snapshot is preferable for small, low-probability networks.Comment: To appear in SIGMOD 202
    corecore