871 research outputs found

    Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

    Full text link
    This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This version has updated reference

    The Discrete Dantzig Selector: Estimating Sparse Linear Models via Mixed Integer Linear Optimization

    Full text link
    We propose a novel high-dimensional linear regression estimator: the Discrete Dantzig Selector, which minimizes the number of nonzero regression coefficients subject to a budget on the maximal absolute correlation between the features and residuals. Motivated by the significant advances in integer optimization over the past 10-15 years, we present a Mixed Integer Linear Optimization (MILO) approach to obtain certifiably optimal global solutions to this nonconvex optimization problem. The current state of algorithmics in integer optimization makes our proposal substantially more computationally attractive than the least squares subset selection framework based on integer quadratic optimization, recently proposed in [8] and the continuous nonconvex quadratic optimization framework of [33]. We propose new discrete first-order methods, which when paired with state-of-the-art MILO solvers, lead to good solutions for the Discrete Dantzig Selector problem for a given computational budget. We illustrate that our integrated approach provides globally optimal solutions in significantly shorter computation times, when compared to off-the-shelf MILO solvers. We demonstrate both theoretically and empirically that in a wide range of regimes the statistical properties of the Discrete Dantzig Selector are superior to those of popular â„“1\ell_{1}-based approaches. We illustrate that our approach can handle problem instances with p = 10,000 features with certifiable optimality making it a highly scalable combinatorial variable selection approach in sparse linear modeling

    Performance Analysis of Sparse Recovery Based on Constrained Minimal Singular Values

    Full text link
    The stability of sparse signal reconstruction is investigated in this paper. We design efficient algorithms to verify the sufficient condition for unique â„“1\ell_1 sparse recovery. One of our algorithm produces comparable results with the state-of-the-art technique and performs orders of magnitude faster. We show that the â„“1\ell_1-constrained minimal singular value (â„“1\ell_1-CMSV) of the measurement matrix determines, in a very concise manner, the recovery performance of â„“1\ell_1-based algorithms such as the Basis Pursuit, the Dantzig selector, and the LASSO estimator. Compared with performance analysis involving the Restricted Isometry Constant, the arguments in this paper are much less complicated and provide more intuition on the stability of sparse signal recovery. We show also that, with high probability, the subgaussian ensemble generates measurement matrices with â„“1\ell_1-CMSVs bounded away from zero, as long as the number of measurements is relatively large. To compute the â„“1\ell_1-CMSV and its lower bound, we design two algorithms based on the interior point algorithm and the semi-definite relaxation
    • …
    corecore