6,250 research outputs found

    Bayesian Inference of Log Determinants

    Full text link
    The log-determinant of a kernel matrix appears in a variety of machine learning problems, ranging from determinantal point processes and generalized Markov random fields, through to the training of Gaussian processes. Exact calculation of this term is often intractable when the size of the kernel matrix exceeds a few thousand. In the spirit of probabilistic numerics, we reinterpret the problem of computing the log-determinant as a Bayesian inference problem. In particular, we combine prior knowledge in the form of bounds from matrix theory and evidence derived from stochastic trace estimation to obtain probabilistic estimates for the log-determinant and its associated uncertainty within a given computational budget. Beyond its novelty and theoretic appeal, the performance of our proposal is competitive with state-of-the-art approaches to approximating the log-determinant, while also quantifying the uncertainty due to budget-constrained evidence.Comment: 12 pages, 3 figure

    On the Estimation of Nonrandom Signal Coefficients from Jittered Samples

    Get PDF
    This paper examines the problem of estimating the parameters of a bandlimited signal from samples corrupted by random jitter (timing noise) and additive iid Gaussian noise, where the signal lies in the span of a finite basis. For the presented classical estimation problem, the Cramer-Rao lower bound (CRB) is computed, and an Expectation-Maximization (EM) algorithm approximating the maximum likelihood (ML) estimator is developed. Simulations are performed to study the convergence properties of the EM algorithm and compare the performance both against the CRB and a basic linear estimator. These simulations demonstrate that by post-processing the jittered samples with the proposed EM algorithm, greater jitter can be tolerated, potentially reducing on-chip ADC power consumption substantially.Comment: 11 pages, 8 figure

    Nonlinear State-Space Models for Microeconometric Panel Data

    Get PDF
    In applied microeconometric panel data analyses, time-constant random effects and first-order Markov chains are the most prevalent structures to account for intertemporal correlations in limited dependent variable models. An example from health economics shows that the addition of a simple autoregressive error terms leads to a more plausible and parsimonious model which also captures the dynamic features better. The computational problems encountered in the estimation of such models - and a broader class formulated in the framework of nonlinear state space models - hampers their widespread use. This paper discusses the application of different nonlinear filtering approaches developed in the time-series literature to these models and suggests that a straightforward algorithm based on sequential Gaussian quadrature can be expected to perform well in this setting. This conjecture is impressively confirmed by an extensive analysis of the example application
    • …
    corecore